
Année Pré-doctorale de Recherche à l’Etranger

Politecnico di Torino

Internship report : H-matrices and
Adaptive Cross Approximation

Jessie Levillain

Tutor : Prof. Fabio Freschi

October 1st 2019 - June 30th 2020

Acknowledgements

I would like to express my deep gratitude to Fabio Freschi and Lionel Pichon for giving me this opportunity to
do an internship in Turin. I am particularly grateful for Fabio’s patient guidance at work, but also his and
Vincenzo’s advice and help in everyday life. Fabio’s willingness to give his time so generously has been very
much appreciated. Special thanks to Pia for the administrative work in Politecnico, and to Luca Giaccone for
his help with GitHub. I would also like to thank the whole CADEMA team and PhDs for welcoming me and

fully integrating me in the research group.

1

Abstract
This report deals with hierarchical methods to store matrices resulting from hybrid formulations of physical
problems. The problem studied here is a nonlinear eddy current problem, solved numerically by using a

coupling of boundary element methods and surface impedance boundary conditions. The method showed the
benefits of the two formulations: the SIBC allowed the use of analytical or semi-analytical solution of the
electromagnetic field in thin conductive layers, also in case of nonlinear material, while the BEM rigorously

accounted for the regularity conditions of the magnetic field at infinity. The equations are translated in terms
of a matrix equation which are then solved by the iterative solver GMRES. Because the numerical solution is
based on the use of dense BEM matrices, both matrix filling and inversion times are critical. For this reason,

matrices are stored as a hierarchical system of blocks which can be approximated by the use of low rank
matrices. This H-matrix theory enabled the use of algebraic matrix operations with almost linear complexity.
The whole project was implemented and tested in MATLAB language, and matrix blocks were created taking

into account both the geometric aspect of the physical problem, and hierarchical matrix theory.

Résumé
Ce rapport traite de méthodes hierarchiques pour stocker des matrices résultant de formulations hybrides de
problèmes physiques. Le problème en question est un problème non linéaire lié aux courants de Foucault,

résolu numériquement par un couplage d’une méthode d’élements finis de frontière et de conditions
d’impédance de surface aux bords du domaine. Cette méthode comporte les avantages des deux formulations :
les conditons d’impédance de surface permettent d’utiliser des solutions analytiques ou semi analytiques du
champ électromagnétique dans les couches conductrices de fine épaisseur, tandis que la méthode des éléments
finis de frontière retranscrit rigoureusement les conditions de régularité du champ magnétique à l’infini. Les
équations résultantes sont ensuite traduites sous la forme d’un système matriciel, qui est résolu par une

méthode itérative de généralisation de minimisation du résidu. Comme la solution est basée sur l’utilisation de
matrices denses et de grande taille, leur remplissage ainsi que leur inversion posent problème au niveau de la
complexité en temps. C’est pourquoi les matrices sont stockées selon un système hierarchique de blocs qui
sont approximés par des matrices de faible rang. cette théorie des matrices hiérarchiques, ou H-matrices,

permet d’utiliser des opérations algébriques sur ces matrices tout en gardant une complexité en temps et en
espace presque linéaire. L’ensemble du projet a été implémenté et testé en langage MATLAB, et les blocs

hiérachiques ont été construits en prenant en compte à la fois la théorie des H-matrices et l’aspect
géométrique du problème physique.

Contents

Introduction . 3

1 Hybrid solutions for nonlinear eddy currents problems 4
1.1 Preliminary notions . 4

1.1.1 Some equations at the foundation of electromagnetism . 4
1.1.1.1 Biot-Savart’s law . 4
1.1.1.2 Maxwell’s equations and Eddy currents . 5

1.1.2 Green’s formula . 5
1.2 Tonti diagrams and numerical methods for electromagnetics . 5

1.2.1 Classifying physical variables . 5
1.2.2 Cell complexes . 6

1.2.2.1 Dual cell complex . 6
1.2.2.2 Orientation of a p-cell . 7
1.2.2.3 Cofaces and coboundary . 8
1.2.2.4 Incidence numbers and incidence matrices . 9

1.2.3 Principles of the Classification Theory . 9
1.2.4 Tonti diagrams . 9
1.2.5 Resulting numerical scheme . 10
1.2.6 Hybrid BEM-SIBC numerical scheme . 10

1.3 Description of the electromagnetic system and its resulting equations 11
1.3.1 Description of the problem . 11
1.3.2 Electromagnetic variables . 11
1.3.3 BEM formulation for the unbounded region . 12
1.3.4 SIBC formulation in terms of integral variables . 13

1.3.4.1 Constitutive equation : linear case . 14
1.3.4.2 Constitutive equation : nonlinear case . 14

1.3.5 Interface conditions . 15
1.3.6 Final equation . 16
1.3.7 Nonlinear solution . 16
1.3.8 Preconditioner . 17

1.4 State of the art . 17

2 H-matrix theory 19
2.1 Hierarchical matrices . 19

2.1.1 Reminders on Singular Value Decomposition (SVD) . 19
2.1.2 A quick introduction to ACA method and H-matrices . 20
2.1.3 Low rank approximation of matrix blocks . 20
2.1.4 Singular Value Decomposition of low-rank matrices . 21
2.1.5 Block cluster tree and partitioning . 21
2.1.6 The set of Hierarchical Matrices . 22

2.2 Cross approximation of admissible H-matrix blocks . 22
2.2.1 Cross approximation . 22
2.2.2 Cross Approximation with full pivoting . 24
2.2.3 Cross approximation with partial pivoting . 25
2.2.4 Adaptive Cross Approximation (ACA) . 25

2.3 H-matrix algebra . 26
2.3.1 Rounded addition . 26
2.3.2 Agglomerating low-rank blocks . 27
2.3.3 Multiplication . 27
2.3.4 Inversion . 28
2.3.5 LU Decomposition . 28
2.3.6 Using H-matrices for preconditioning . 29

1

3 The H-matrix library in Matlab language : hmtxLib 30
3.1 H-matrix implementation : creating and filling an H-matrix structure 30
3.2 H-matrix representation . 32

3.2.1 Changing the type of an H-matrix block with hmtx_changeformat 32
3.2.2 Copying a cluster tree with hmtx_copystruct . 32
3.2.3 Fullmatrix times H-matrix product using hmtx_MxH . 32
3.2.4 Plotting an H-matrix . 32
3.2.5 Coarsening an H-matrix . 33

3.3 Arithmetics . 33
3.3.1 Simple operations . 33
3.3.2 Addition and subtraction . 33
3.3.3 Multiplication . 34
3.3.4 Inversion . 34
3.3.5 LU decomposition . 35

3.4 Preliminary results . 36
3.4.1 Memory and entry compression . 36
3.4.2 Primary (fast) functions . 36
3.4.3 Secondary (slow) functions : multiplication, inversion, triangular system solvers and LU

decomposition . 37

4 MATLAB toolbox for arithmetic operations of H-matrices 40
4.1 Library structure . 40
4.2 Work done on the library . 40
4.3 Benchmarks . 41

4.3.1 Tests from the original library on random matrices . 41
4.3.2 Tests on simplified models for this project . 43

5 Using H-matrices for solving problems with hybrid BEM-SIBC formulation 46
5.1 Adapting H-matrix cluster trees to fit with the geometry of the system 46

5.1.1 Using non-binary partitions . 47
5.1.2 Binary splitting following disconnected regions . 47

5.2 Using the new cluster tree and H-matrix algebra to solve the final equation 48
5.3 Results . 48
Conclusion . 50

Appendix 53

A Glossary 53

B Additional proofs 54

C LU methods 56

D Reverse Cuthill Mc-Kee algorithm 57

E Generalized Minimal Residual Method (GMRES) 58

F Hodge star operator and differential forms 60

2

Introduction
Physical models of real-world problems often lead to integral equations or to boundary value problems of

elliptic partial differential equations. In the context of this report, boundary value problems problems are re-
formulated in terms of boundary integral equations. The physical model explored in this report is a nonlinear
eddy current problem, which plays a key role in developing wireless power transmission devices. Since such
problems can most often not be solved explicitly, their numerical solution is done by approximating the exact
solution from finite dimensional spaces.

A numerical procedure, called Boundary Element Method (BEM), which has been developed in the 1950s,
is often more convenient than the traditional Finite Element Method (FEM) and has become a powerful tool
for numerical studies of physical phenomena in both bounded and unbounded domains. However, when it
comes to the specific problem presented here, standard volume-based techniques are not suitable, as they re-
quire a large amount of elements in the mesh to detect the small penetration depth. That is why an hybrid
method is presented here, using both BEM and surface impedance boundary conditions (SIBC), to avoid the
fine discretization inside the conductive material. SIBC uses analytical or semi-analytical formulations of the
electromagnetic phenomena instead, making the method efficient in multi-scale, multi-domain problems [1].

This numerical procedure, applied to boundary integral equations leads to a linear system of algebraic equa-
tions, with mostly dense matrices involved, i.e. whose entries do not vanish. This leads an asymptotically
quadratic memory requirement for the whole procedure. Moreover, the success of these numerical methods
coupled with the fast development of computers has led to a constant demand for higher accuracy and more
sophisticated tasks, which entails the creation of very large dense matrices. A new way of using and storing
these matrices thus needs to be used. Fortunately, all boundary element matrices can be decomposed into a hi-
erarchical system of blocks which can be approximated by the use of low rank matrices. This hierarchical matrix
structure leads to a matrix format called hierarchical matrices, or H-matrices, which represents each entry of a
fully populated matrix by low-rank matrices. Low-rank matrices are obtained by using various approximation
methods, such as a truncated singular value decomposition (SVD) or more optimized routines such as adaptive
cross approximation (ACA), which will be explored in chapter 2. In addition to efficiently storing matrices,
H-matrices provide approximate variants of the usual matrix operations such as addition, multiplication, and
inversion with almost linear complexity.

After focusing on an eddy current problem leading to BEM-SIBC formulations, methods to hierarchically
store the resulting matrices will be explored and implemented, so as to finally solve the original physical problem.

3

Chapter 1

Hybrid solutions for nonlinear eddy
currents problems

In the last decade, the development of wireless power transmission devices increased the challenges of electro-
magnetic simulations. In particular, when high power is required, for example for automotive applications, the
electromagnetic structure present many peculiar characteristics that do not fit with standard simulation tools:

• the frequency range involves low-medium frequencies, up to 100 kHz, due to the availability of suitable
power electronics;

• the domain under study is characterized by open boundaries, whereas the active structures have limited
extension;

• the thickness of active structures like car bodies is much smaller than other dimensions (order of millimeters
compared with meters);

• the penetration depth is much smaller than the thickness.

For these reasons, ad-hoc formulations are required to efficiently and effectively solve such problems. In [1]
the possibility of coupling nonlinear surface impedance boundary conditions (SIBC) with the boundary element
method (BEM) was presented. The BEM-SIBC hybrid formulation was based on the definition of integral
variables over two intertwined surface meshes, namely primal and dual meshes, linked by duality relations. This
particular choice gave rise to a lumped circuit network of admittances in the conductive domain which was
coupled with the boundary element formulated in terms of reduced scalar potential and its normal derivative.
The method showed the benefits of the two formulations: the SIBC allowed the use of analytical or semi-
analytical solution of the electromagnetic field in thin conductive layers, also in case of nonlinear material,
while the BEM rigorously accounted for the regularity conditions of the magnetic field at infinity.

1.1 Preliminary notions
In this section, some basic laws and equations in electromagnetism will be given, without any proof. The

reader is invited to refer to a physics course such as [2] for a more detailed approach. Then, we will dwell on a
few other points, necessary to justify the BEM-SIBC hybrid formulation.

1.1.1 Some equations at the foundation of electromagnetism
In this section, a few basic equations of electromagnetism will be given, to be used later in this report.

1.1.1.1 Biot-Savart’s law

The Biot-Savart Law relates magnetic fields to the currents which are their sources. Let C be a curve representing
a coil, r′ a point on C. The magnetic field −→B due to an element

−→
dl of a current-carrying wire in the air at a

point r is given by :
−→
B (−→r) = µ0

4π

∫
C

I
−→
dl ∧ (−→r −

−→
r′)

|−→r −
−→
r′ |3

(1.1)

where µ0 = 4π × 10−7T ·m/A is the permeability of free space, and I the current going though the coil.

4

1.1.1.2 Maxwell’s equations and Eddy currents

Maxwell’s equations express the fluxes and circulations of the electric and magnetic field vectors in either integral
or differential form. They will be presented here in the latter form.

1. Faraday’s law of induction : Time-varying magnetic fields create an electric field.

∇×−→E = −∂
−→
B

∂t
; (1.2)

2. Ampère-Maxwell law : Steady currents and time-varying electric fields create a magnetic field.

∇×−→B = µ0
−→
J + 1

c2
∂
−→
E

∂t
; (1.3)

3. Gauss’s electric law : Electric charges create an electric field, whose electric flux across a closed surface is
proportional to the charge enclosed.

∇ ·−→E = ρ

ε0
(1.4)

where ε0 is the electric constant, and ρ the total electric charge density;

4. Gauss’ magnetic law : There are no magnetic monopoles, and the magnetic flux in an enclosed surface is
naught.

∇ ·−→B = 0. (1.5)

Eddy currents are induced currents caused by a varying magnetic field in a conductive region. Their existence
and nature can be found thanks to Faraday’s law of induction.

1.1.2 Green’s formula
This section is a quick reminder on some useful integration theorems [3], which will be used in 1.3.

Theorem 1.1.1 (Green’s formula). Let Ω be an open, bounded C1 subset of Rn, w ∈ C1(Ω̄). Then w verifies
Green’s formula: ∫

Ω

∂w

∂xi
(x)dx =

∫
∂Ω

w(x)ni(x)ds (1.6)

where ni is the ith component of the unitary exterior normal vector n.

Corollary 1.1.1.1 (Integration by parts). Let Ω be an open, bounded C1 subset of Rn, u, v ∈ C1(Ω̄). Then, u
and v verify : ∫

Ω

u(x) ∂v
∂xi

dx = −
∫
Ω

v(x) ∂u
∂xi

dx+
∫
∂Ω

u(x)v(x)ni(x)ds. (1.7)

Theorem 1.1.2 (Stokes’ theorem). Let Ω be an open, bounded C1 subset of Rn, φ ∈ C1(Ω̄,R) a scalar function
and σ ∈ C1(Ω̄). Then : ∫

Ω

∇ · σ(x)φ(x)dx = −
∫
Ω

σ(x) · ∇φ(x)dx+
∫
∂Ω

σ(x)n(x)φ(x)ds. (1.8)

1.2 Tonti diagrams and numerical methods for electromagnetics
Unless stated otherwise, in this section, n, p will always be positive integers, n representing the dimension

of the considered space.

1.2.1 Classifying physical variables
Tonti diagrams are classification diagrams, i.e. graphical representations of physical theories in which the
role and relationships of variables, space and time entities, as well as physical and material laws are explicitly
represented [4]. In order to define these diagrams, physical variables first need to be classified in three categories:

• Configuration variables, which describe the configuration of the field or system;

• Source variables, which describe the sources of the field or the forces acting on the system;

• Energy variables, which are obtained as the product of a configuration and a source variable.

5

Variables from the same category are linked to one another by sum, difference, limit, differentiation and
integration operations. Constitutive equations then link configuration with source variables, while also giving
material and system parameters.

Moreover, some entities do not depend on local quantities and are naturally and intrinsically associated with
space and time entities. They are denoted as global variables, and defined as domain functions. While local
quantities are discontinuous at interfaces, global variables are naturally continuous.

1.2.2 Cell complexes
Differential formulations of physical laws such as in 1.1.1.2 are based on coordinate systems in which local scalar
or vector functions are defined. However, when dealing with formulations based on global variables, one has to
work on the cell complexes on which they are defined.
A cell complex is a subdivision of a space region into small elements called cells, or elements in numerical
analysis. In this paper, the term cell will be used, and consequently the term cell complex, because this is the
name given in algebraic topology, where a complete theory has been developed on this topic. In the algebraic
formulation of physics cell complexes play the same role that coordinate systems play in the differential formu-
lation. Cell complexes offer all the space elements needed for the algebraic formulation: points (vertices), lines
(edges), surfaces (faces) and volumes (cells) [4].

Definition 1.2.1 (p-cells). Vertices are called zero-dimensional cells, or 0-cells for short; edges, 1-cells; faces,
2-cells; volumes, 3-cells. These p-cells will be denoted by e0, e1, e2, e3 respectively, as shown in table 1.1.

Symbol Space element Cell complex Algebraic topology

P Point Vertex 0-cell e0

L Line Edge 1-cell e1

S Surface Face 2-cell e2

V Volume Cell 3-cell e3

Table 1.1: Symbols and name of space elements

A cell complex can be created in two ways [4]:

1. Discretizing a space region by using the coordinate surfaces of a coordinate system, whichever the co-
ordinate system. A coordinate cell complex obtained in this way is useful for deducing the differential
formulation of physical equations from the algebraic formulation;

2. Discretizing a space region by subdividing it into elements of an arbitrary shape. The simplest subdivisions
are formed by tetrahedra (in space) and triangles (in a plane). Since these elements are the simplest
polyhedra and polygons, respectively, they are called simplices, and a cell complex formed by these
simplices is called a simplicial complex.

In this project, only simplicial complexes will be used.

1.2.2.1 Dual cell complex

In the differential formulation, physical laws are expressed by differential operators, meaning that a differential
equation implies a neighborhood of every point and not only the point itself. A neighborhood acts as an aux-
iliary region of the point, with an undefined extension. In a discrete formulation, this auxiliary region can be
identified with the ‘stencil’ used in the forward and backward differences. As a general principle, the algebraic
formulation requires a surrounding auxiliary region around the nodes of a cell complex. Thus, for every node
of a cell complex, one can consider an auxiliary region around it. All these auxiliary regions constitute another
cell complex, called a dual cell complex of the complex [4].
If the primal cell complex is denoted as K, then its dual will be denotes as K̃. It is a matter of convenience to
consider the first complex as primal and the second as dual, or vice versa. From a physics point of view, it is
often more convenient to consider as dual that complex whose cells contain the sources of the field.

6

Figure 1.1: Primal and dual cells for a simplicial complex [5]

In this project, the dual of the simplicial complex considered later on is created using barycentric cells.
In the barycentric subdivision of a plane cell complex, the dual of a 1-cell is composed of two line segments
connecting the midpoint of the 1-cell with the two barycenters of the adjacent cells. In other words, the dual
1-cell is not a straight line [4]

1.2.2.2 Orientation of a p-cell

According to [5], the inner-orientation of a space entity can be defined as:

• A point P , which has inner orientation if it is defined as a sink (+) or a source (−);

• A line L, which has inner orientation if its boundary has inner orientation (i.e. a direction has been
defined on it);

• A surface S, which has inner orientation if its boundary has inner orientation;

• A volume V , which has inner orientation if its boundary has inner orientation.

It should be noted that, while the definition of inner orientation is independent of the number of dimensions,
the outer orientation depends on the number of dimensions in which the space element is embedded, as defined
as :

• A volume Ṽ , which has outer orientation if normals have been defined (i.e inside and outside can be
distinguished);

• A surface S̃, which has outer orientation if one side is labeled + and the other − (i.e. the direction of flow
through it can be distinguished);

• A line L̃, which has outer orientation if a direction of rotation around it has been fixed;

• A point P̃ , which has outer orientation if all lines originating from it have an outer orientation.

Given a cell complex, one can assign an inner orientation to all its p-cells as follows:

• All 0-simplices can be considered either as sinks (+) or sources (−): sinks are the common choice;

• All n-simplices must then be given an inner orientation. One of the two possible orientations of one n-
simplex is chosen and propagated to all n-simplices. The propagation criterion is provided by the Möbius
law of edges [6] two adjacent n-cells have compatible orientations when they induce opposite orientations
on their common face.

• For cells of dimension p /∈ {0, n}, a compatible orientation cannot, in general, be given, and orientation
must be chosen arbitrarily for every p-cell. In computational physics, it is customary to orient 1-cells from
the node with the smaller label to the node with the greater label.

A cell complex has an inner orientation when all the p-cells, with 0 ≤ p ≤ n have been oriented. Since
physical variables refer to space elements endowed with an orientation, it will be useful to assign an orientation
to all p-cells of a cell complex. If an inner orientation is assigned to every p-cell of the primal complex, this
automatically induces an outer orientation on the dual cells of dimension (n− p).

7

P

L

Figure 1.2: Oriented simplicial complex

Definition 1.2.2 (Chain and cochains). Let a general domain be partitioned by a set of p-cells ck, each one
endowed with its own orientation (inner/outer), denoted by an incidence number nk 1.2.2.4. The aggregate of
the p-cell ck and the incidence number nk is called chain :∑

k

cknk.

Given a global physical quantity associated with a generic p-cell of a cell complex, the knowledge of the amount
of a physical variable associated with a set of p-cells is called p-cochain.

1.2.2.3 Cofaces and coboundary

Definition 1.2.3 (Cofaces and coboundary). The faces of a p-cell are those (p − 1)-cells that are incident on
that cell. The (p+ 1)-cells that share a generic common p-cell are called cofaces. The set of all the cofaces of a
p-cell forms the coboundary of that cell.

Figure 1.3: Coboundary process [5]

Starting from a p-cochain, a procedure called the coboundary process gives rise to a (p+ 1)-cochain in the
following way :

• First, the value of every physical variable associated with any p-cell is transferred to all the cofaces of the
p-cell, with the correct incidence number;

• Then, for every (p+ 1)-cell all these values are added together. This gives rise to a new physical variable,
with the same physical dimensions, associated with every (p+ 1)-cell.

8

The coboundary process is a purely topological operation, thus unrelated to specific physical theories but
common to different problems. As a consequence, in a multi-physics problem, the discrete operators that are
representative of a gradient, curl and divergence remain the same for all the problems.

1.2.2.4 Incidence numbers and incidence matrices

The notion of incidence numbers between nodes and branches and between branches and meshes is introduced
in analogy to the theory of oriented graphs. Incidence numbers have values in {−1, 0,+1}. Their sign indicates
whether the mutual orientations of two p-cells are compatible or not, while their number gives an information
about whether those p-cells are mutually incident [4]. Incidence numbers can be collected to form incidence
matrices. The notion of incidence number can be extended both to a primal complex endowed with an inner
orientation and to a dual complex. All the incidence number of a cell complex can be assembled in a matrix,
leading to the following discrete counterparts of the continuous differential operators:

• G, G̃, primal and dual edge-node matrices, corresponding to a discrete gradient;

• C, C̃, primal and dual face-edge matrices, corresponding to a discrete curl;

• D, D̃, primal and dual volume-face matrices, corresponding to a discrete divergence.

Some equations between those matrices then follow :

D̃nṼ ×nS̃ = −GTnP×nL (1.9)
C̃nS̃×nL̃ = CTnL×nS (1.10)
G̃nL̃×nP̃ = DT

nS×nV (1.11)

where nP , nL, nS and nV are the numbers of points, lines, surfaces and volumes in the cell complex and
nP̃ , nL̃, nS̃ and nṼ are the number of points, lines, surfaces and volumes in its dual complex.

Remark The boundary of a boundary is an empty set.

1.2.3 Principles of the Classification Theory
Theorem 1.2.1 (First Principle of the Classification Theory [5]). 1. Global configuration variables are as-

sociated with space and time elements endowed with inner orientation;

2. Global source variables are associated with space and time elements endowed with outer orientation
This principle is justified by the fact that source variables are used in balance equations which require the

definition of normals.

Theorem 1.2.2 (Second Principle of the Classification Theory). In every physical theory there are physical laws
that link the global variables that refer to an oriented space-time element with others that refer to its oriented
boundary (for instance Stokes and divergence theorems).
Physical laws of this type are "topological equations", link physical variables of the same kind, as defined in 1.2.1,
and do not involve metrical notions, nor material parameters. They are thus valid in any medium.

1.2.4 Tonti diagrams
The previous sections lead to the construction of classification diagrams, i.e. graphical representations of physical
theories in which the role and relationships of variables, space and time entities, as well as physical and material
laws are explicitly represented [7].

This kind of diagram has a general form like in 1.4 and its features are:

• Constitutive relations that go from front to back layers represent irreversible laws;

• On the left side, quantities represent primal space and time entities, while dual ones are on the right side;

• Different vertical level refer to different space entities;

• Vertical connections represent topological operators (partial differential operators);

• Front-to-back connections on the same side represent the time difference action (time derivatives);

• Front-to-back connections on opposite sides stand for irreversible material laws (constitutive equations);

• Horizontal connections on the same plane represent reversible material laws (constitutive equations);

A more mathematical way to view this [8] would be to define a vertical connection by a derivation, a
horizontal one by a Hodge star operator [9] and to associate to each level a p-form [10], see appendix F for more
information on these concepts. These notions of algebraic topology will not be detailed here, as it is not the
main goal of this project.

9

Figure 1.4: Example Tonti diagram for electromagnetism [8]

1.2.5 Resulting numerical scheme
The notions explained in the previous section lead to a technique called the "Cell Method", which leads directly
to a numerical scheme. The Cell Method (CM) can be done in five steps [5]:

1. First the problem is expressed in terms of domain quantities (global variables). This follows from the first
and second principles of the classification theory presented in the previous chapter;

2. The previous step allows the construction of the Tonti diagram for the problem at hand. The coboundary
process states which matrices connect the global variables at different levels of the diagram, while the
construction of the material matrices can be done using constitutive equations of the problem. This
process is detailed in [5];

3. Then, matrix equations are taken directly from the Tonti diagram ;

4. Using the previous equations and the relations between the operators from equation 1.11, a final system
of linear equations is obtained;

5. After the previous system has been solved by means of a suitable numerical technique for large sparse
algebraic systems of equations, other quantities can be obtained very easily.

1.2.6 Hybrid BEM-SIBC numerical scheme
The method chosen in section 1.3 uses the same kind of mesh, and equations from the Tonti diagram for the
SIBC part, but sill differs slightly in the other half. Indeed, the second part of the following hybrid method is the
BEM, which only discretizes the boundary of the domain of interest. BEM is a variation of the Finite Element
Method (FEM), which requires a fundamental solution to the partial differential equation (PDE), but works well
on infinite or semi-infinite domains, while giving rise to smaller matrices than the FEM. This kind of method has
first been used in [11], but presents challenges for nonlinear problems, which will be explored in the next sections.

BEM schemes are applicable in boundary value problems for a PDE, with an explicit fundamental solution
that is know:

∆u = 0 in a domain Ω ⊂ Rn

u = g on the boundary Γ = ∂Ω.

This solution then needs to be represented in the domain by means of boundary potentials, which are actually
well-known in our case, for electromagnetics. The representation formulas give the solution in the interior of the
domain. If one takes boundary values in the representation formula, one obtains boundary integral equations.
One then assumes that Γ can be decomposed into a finite number of subsets, each of which has a regular
parameter representation by some parameter domain in Rn−1. For the numerical solution, a system of discrete
equations on the boundary elements is then computed. However, if the integral equation is of the form Au = f
on Γ, convergence proofs ans asymptotic error estimates are only available under the assumption that A verifies
certain conditions of ellipticity [12].

10

1.3 Description of the electromagnetic system and its resulting equa-
tions

This section is largely based on [1] which is the base that gives rise to this project. The process detailed
below has for sole purpose to fully introduce the problem of interest. Convergence of the methods or existence
or solutions will only be assumed using the guarantee that electromagnetic equations such as the ones used here
are sufficiently smooth given their intrinsic definition, and that the CM converges towards a solution of this
problem, as it does for similar examples in [4, 5].

1.3.1 Description of the problem
In this report, the domain under study can be simple examples such as a filamentary coil on a conductive sphere,
or a more complex one, based on real-life problems, such as a car body. Either way, it can be divided in three
complementary regions :

Figure 1.5: Domain division: known sources VS , eddy currents V and non-conductive V0 regions.

• the source domain, VS with imposed currents, e.g., filamentary coils with known currents and/or massive
conductors with known current density distribution;

• the domain V where eddy currents are induced, with finite conductivity σ and permeability µR (possibly
nonlinear);

• the non conductive (σ = 0 S/m) unbounded domain V0, rigorously accounted by the Green’s formula in
the integral formulation.

The study is restricted to cases where the penetration depth (either in the linear and in the nonlinear cases)
is at least 5 times smaller when compared to the geometric dimensions of the conductive region so that the
current density profile is completely developed. It is thus possible, under this hypothesis, to consider only the
boundary S = ∂V of V . This boundary is discretized with a simplicial mesh G , referred to as primal mesh ,
made of oriented faces, edges and nodes. From this mesh it is possible to derive a secondary mesh G̃ , namely
dual mesh , obtained by barycentric subdivision of G , where dual nodes are located in correspondence of the
primal face barycenters, dual edges connect adjacent nodes and pass through the primal edge mid-points 1.2.
Dual faces are built onto these dual edges and extend through the depth of V until all the field quantities vanish.
The orientation of the dual geometric entities in G̃ is induced by the corresponding elements in G [1]. Figure
1.6 shows these primal and dual complexes.

1.3.2 Electromagnetic variables
The electromagnetic variables are defined following the previous structure :

• the electric voltage is defined along the primal edges L by

ek =
∫
Lk

−→
E0 ·
−→
dL,

where −→E0 is the value of the electric field on the surface of the conductive object;

11

Figure 1.6: Primal (black) and barycentric dual (red) mesh

• the magnetic flux is defined through primal faces S by

bm =
∫
Sm

−→
B0 ·
−→
dS,

where −→B0 is the surface magnetic flux density;

• the magnetic scalar potential ψ is defined on dual nodes, while its normal derivative with respect to the
surface mesh ∂ψ

∂n = ∂nψ is assumed uniform over primal faces;

• the magneto-motive forces are defined along the dual edges L̃ :

hk =
∫
L̃k

−→
H0 ·

−→
dL,

with −→H0 the surface magnetic field. A magneto-motive force is a physical force generating a magnetic flux;

• the electric current ik is obtained by integration of the current density −→J (z) through the generic dual face
S̃k :

ik =
∫
S̃k

−→
J (z) ·

−→
dS,

−→
J (z) depends on the position z along the depth of V to account for the magnetic diffusion.

1.3.3 BEM formulation for the unbounded region
The homogeneous unbounded region V0 is external to the magnetic-conductive domain. Its fields are thus
analyzed with a standard BEM formulated in terms of reduced magnetic scalar potential ψ and its normal
derivative ∂nψ. Indeed, in an unbounded and homogeneous region such as V0 or the air, the induced magneti-
zation can be represented as the gradient of a scalar potential, called the reduced scalar potential [13, 14]. This
reduced potential satisfies the equations −→H = −∇ψ and ∇2ψ = 0. By defining the free space Green’s function
G(−→r ,

−→
r′) = 1

4π|−→R |
where −→R = −→r −

−→
r′ is the vector from the source to the observation point, and applying the

second Green’s theorem to the Laplace equation ∇2ψ = 0, it follows that :

c(
−→
r′)φ(

−→
r′) =

∫
S=∂V

G(−→r ,
−→
r′)∂nψ(−→r)dΓ−

∫
S=∂V

ψ(−→r)H(−→r ,
−→
r′)dΓ, (1.12)

where c(
−→
r′) is the free term coefficient and can be interpreted as the faction of ψ(

−→
r′) that lies inside V ,

i.e. its value depends on the problem and on the position of
−→
r′ in the chosen geometry. [15] If the vector

−→
r′ is

directed to a point of S lying on a smooth surface, then c(
−→
r′) = 1

2 . H(−→r ,
−→
r′) = ∂G(−→r ,

−→
r′)

∂n(−→r) = ∇G(−→r ,
−→
r′) ·−→n (−→r),

12

is the normal derivative of G(−→r ,
−→
r′). A system of linear, algebraic equations is obtained after discretizing the

closed boundary S with triangular elements, as explained in 1.3.2, and applying equation 1.12

−Hψ +W∂nψ = 0 (1.13)

with for any elements i, j the generic entries of the matrices H and W :

Hi,j = 1
2δij −

∫
Sj

∂G(−→ri ,−→rj)
∂n dS = 1

2δij −
1

4π
∫
Sj

∇
(

1
|−→ri−−→rj

|
)
· −→njdS

Wi,j =
∫
Sj

G(−→ri ,−→rj)dS = 1
4π
∫
Sj

1
|−→ri−−→rj |

dS

(1.14)

where δij is the Kronecker operator. Surface integrals of the Green’s function and its derivative defined in
the previous equations can be analytically computed, this is described in detail in [16, 17, 18] but will not be
addressed here.

1.3.4 SIBC formulation in terms of integral variables
To define the SIBC in terms of integral variables, Ampère’s and Faraday’s laws are used. Ampère’s law in
integral form evaluated on the kth dual face S̃k reads :∮

L̃k=∂S̃k

−→
H ·
−→
dL =

∫
S̃k

−→
J ·
−→
dS = ik (1.15)

(a) (b)

Figure 1.7: (a) Ampère ’s law applied on dual surfaces; (b) Faraday ’s law imposed on primal surfaces.

The circulation of the magnetic field can be expressed as the sum of the magneto-motive forces along the
boundary L̃k of S̃k. Using the notations defined in figure 1.7: hk + h′k − h′′k − h′′′k = ik.
However, the magneto-motive forces along the segments BC and DA are zero because the line is orthogonal
to the magnetic field parallel to the surface. In addition, because the segment CD lies in the region where all
fields are zero, its contribution to the magnetic field circulation vanishes and the only active path is along the
surface dual edge AB [1]:

h′k = h′′k = h′′′k = 0⇒ hk = ik

or, in matrix form
h = i. (1.16)

For Maxwell’s equations in frequency domain at the angular frequency ω, the Faraday’s law applied to a
triangular face Sm in G is : ∮

Lm=∂Sm

−→
E ·
−→
dL =j ω

∫
Sm

−→
B ·
−→
dS = −jωbm (1.17)

Using the definition of the electric voltage, the circulation of the electric field can be written :

e1 − e2 + e3 =
Nedges∑
k=1

cmkek = −jωbm, (1.18)

13

where cmk ∈ {−1, 0,+1} is the incidence number of the kth edge with respect to the mth face in G (figure
1.7). Collecting all coefficients cmk in the matrix C that represents the discrete counterpart of the differential
curl operator as defined in 1.2, Faraday’s law reads

Ce = −jωb. (1.19)

1.3.4.1 Constitutive equation : linear case

Constitutive equations link variables defined on the primal mesh G with those defined on the dual mesh G̃.
Using integral variables, constitutive equations are represented by square matrices that encode the material
properties and the metric of the problem [4]. This formulation requires a link between the currents i through
the dual faces, defined in equation 1.16, and the voltages e along the primal edges, in equation 1.19. The current
can be calculated by integration of the current density through dual faces :

i′k =
∫
S′
k

σ
−→
E (z) ·

−→
dS =

∞∫
0

∫
L′
k

σ
−→
E (z) ·

−→
dLdy (1.20)

The prime (′) symbol indicates that this is a partial contribution coming from the portion of the dual face
that lies inside a single triangle (which will then be assembled with that of adjacent triangle hinged on the same
edge). The electric field can be expressed as: −→E (z) = −→E0f(z), where −→E0 is the surface electric field and f(z)
accounts for the spatial decay of the electric field along the material depth z . In the linear case, f(z) can be
obtained analytically [19], thus: −→E (z) = −→E0(z)e−(1+j) zδ , where δ =

√
2/(ωµσ) is the penetration depth.

In the surface triangular mesh, −→E0 is interpolated through edge elements −→ωm [20], using the voltages em along

the primal edges as weights : −→E0 =
3∑

m=1

−→ωmem. Thus, using equation 1.20, this becomes :

i′k =
3∑

m=1
em

∞∫
0

f(z)dz
∫
l′
k

σ−→ωm ·
−→
dL =

3∑
m=1

em
δ

1 + j
m′km =

3∑
m=1

Y ′kmem (1.21)

Where the term m′km =
∫̃
L′
k

σ−→ωm ·
−→
dL is the classic coefficient of the constitutive matrix in 2d using edge elements.

Assembling element-by-element the admittance matrix Y using the entries Y ′km :

i = Y e. (1.22)

In the linear case, the entries of the admittance matrix may be obtained as the entries of the conductance
matrix of a triangular mesh using the equivalent material property σ/(1 + j) and the penetration depth δ as
thickness.

1.3.4.2 Constitutive equation : nonlinear case

In a nonlinear magnetic material, local waveforms are periodic but not sinusoidal, which makes the use of
complex quantities incorrect. To over- come these problems and make use of the complex representation
of quantities, it is possible to introduce a fictitious inhomogeneous material that accounts for the nonlinear
relationship of the field quantities. This material is described by an equivalent magnetic characteristic [21].
Several methods are available to solve this kind of problems, but here, only the first harmonic equivalent
characteristic will be considered to reconstruct the distorted periodic solution. The choice is made to make a
fair comparison of the results with the reference solution provided by the software FEMM [22] 1 that implements
the first harmonic equivalent magnetic characteristic.
Assuming a purely sinusoidal magnetic field H(t) = Ĥcos(ωt), the equivalent characteristic is built considering
only the first harmonic B̂1 of the distorted magnetic flux density B(t) :

µeq(H) = B̂1

Ĥ
=

2
T

T∫
0
B(t)cos(ωt)dt

Ĥ
(1.23)

The procedure is then repeated for all values of Ĥ of the original magnetic characteristic.
In the nonlinear case, the function f(z,H0) describing the electric field depends on the strength of the tangential
surface magnetic field H0 and, consequently, its expression and that of the integral factor F (H0) cannot be

1FEMM is a suite of programs for solving low-frequency electromagnetic problems on two-dimensional planar and asymmetric
domains. The program currently addresses linear/nonlinear magnetostatic problems, linear/nonlinear time harmonic magnetic
problems, linear electrostatic problems, and steady-state heat flow problems.

14

determined analytically. To overcome this problem, a nonlinear 1-dimensional diffusion problem is solved for
different values of tangential component of the surface magnetic field H0 :

dH

dz
= −σE(z) (1.24)

dE

dz
= −jωµeq(H)H(z) (1.25)

with the boundary conditions H(z = 0) = H0 and H(z →∞) = 0.

Solving this type of equations is a classical problem, which is not detailed here. Having then solved 1.25,
the nonlinear actor F (H0) is defined as :

F (H0) :=
∞∫

0

f(z,H0)dz = 1
E0(H0)

∞∫
0

E(z,H0)dz (1.26)

Under the assumption of using the equivalent nonlinear characteristic identified by equation 1.23, at a specific
working frequency, any nonlinear material can be characterized by a nonlinear complex factor F (H0) [1].

1.3.5 Interface conditions
Interface conditions impose the continuity of the magnetic field and magnetic flux density at the interface
between the BEM and the SIBC formulations. The magnetic field at a point lying on the surface of the
region V comes from two contributions: one originated by the known sources −→HS and the other created by the
magnetization −−→HM : −→H = −→HS +−−→HM . In the air region, the magnetization field −−→HM is expressed as the gradient
of the reduced magnetic scalar potential ψ : −−→HM = −∇ψ, whereas the contribution of the sources in VS is
evaluated using the Biot-Savart’s law :

−→
HS = 1

4π

∫
L̃k

−→
J ×

−→
R

|
−→
R |3

dV (1.27)

(a) (b)

Figure 1.8: (a) Continuity of the tangential component of the magnetic field; (b) continuity of the orthogonal
component of the magnetic flux density.

The continuity of the tangential component of −→H on the surface of the domain is imposed using the magneto-
motive force as global variable. Integrating along a dual edge L̃k leads to:

hk =
∫
L̃k

−→
H ·
−→
dL =

∫
L̃k

(
−∇ψ +−→HS

)
·
−→
dL = −(ψ1 − ψ2) + hSk (1.28)

where 1 and 2 are the endpoints of the dual edge L̃k as shown in 1.8. In matrix form, 1.28 becomes h =
−CTψ + hS . C is primal face-to-edge incidence that corresponds to the surface discrete curl. Using the
transpose operator, the dual edge-to-node incidence matrix (discrete dual gradient) is obtained [5, 23]. The

15

continuity of the orthogonal component of the magnetic flux density in terms of global variables becomes the
continuity of the magnetic flux through primal faces. Considering the kth triangular face:

bk =
∫
Sk

−→
B ·
−→
dS =

∫
Sk

µ0

(
−∇ψ +−→HS

)
·
−→
dS = µ0(−∂nψ +HSnk)Sk (1.29)

Which becomes, by collecting the contribution of all triangles :

b = µ0S(−∂nψ +HSn) (1.30)

being S a diagonal matrix with the area of the primal faces.

1.3.6 Final equation
Using the BEM equation 1.13, the topological equations h = i and Ce = −jωb, the constitutive equation i = Y e
and the two continuity equations 1.28 and 1.30, the final system becomes :

 −H W

CZCT jωµ0S

 ψ

∂nψ

 =

0

CZhS + jωµ0SHSn

 (1.31)

As a preliminary calculation of the impedance matrix Z = Y −1 is needed, using a direct solver becomes
impractical for large-scale problems. For this type of problems, Z is thus not fully computed but stored as
an LU factorization instead, and iterative solvers such as GMRES [24] are used. See appendix E for more
information on this type of solver.

Definition 1.3.1 (Schur complement). Let k ≤ n ∈ N, M =

A B

C D

 be an n × n block matrix with A of

size k, and D invertible.
The Schur complement of the block D of the matrix M is the (n− k)× (n− k) matrix defined by

M/D := A−BD−1C.

If A is invertible, the Schur complement of the block A of the matrix M is the k × k matrix defined by

M/A := D − CA−1B.

Moreover, the spectral properties of this final equation can be further improved, as suggested by [25], by
calculating the Schur complement of the lower-right bock, and solving with respect to ∂nψ :

∂nψ = −HSn + (jωµ0S)−1(CZCTψ − CZhS) (1.32)

Then, by substitution : (
H +W (jωµ0S)−1CZCT

)
ψ = W (jωµ0)−1CZhS +WHSn (1.33)

As S is diagonal, calculating the Schur complement is relatively fast.

1.3.7 Nonlinear solution
In case of nonlinearity, the solution of equation 1.31 becomes iterative. In particular, the admittance matrix Y
and its factorization Z depend on the working point of the magnetic characteristic. Thanks to the formulation
of SIBC in terms of nonlinear admittance, the nonlinear term is integrated in a complex nonlinear factor F
that can be mapped as a function of the tangential component of the magnetic field H0 for each material at
the specified frequency. The smoothness of the nonlinearities of F enables the use of a simple iterative scheme,
where the admittance matrix Y is updated at each nonlinear iteration [1], as shown in 1 :

16

Algorithm 1: Nonlinear solution of SIBC-BEM [1]
ε =∞, ψ = 0, H0 = 0
m′km ← geometry
while ε > εmax and k ≤ kmax do

Fkm ← F (H0) (local nonlinear factor)
Y ← y′km = Fkmm

′
km (admittance matrix)

Z ← Y −1 (in LU form)
f ←W (jωµ0)−1CZhS +WHSn (update right-hand side)
A← H +W (jωµ0S)−1CZCT (update matrix)
ψ ← Aψ = f (GMRES solution)
ε = ‖ψ − ψ(k−1)‖2/‖ψ‖2 (residual error)
h← CTψ + hS (equation 1.28)
H0 = h/L̃

end
return ψ

For the first step, the algorithm assumes a null tangential magnetic field, and the corresponding value of
the parameter F (H0) corresponding to its value in the linear case. After computing the first solution, equation
1.28 gives rise to the vector of magneto-motive forces h, and the new vector of the tangential field is given by
H0,k = hk/L̃k.The iterations stop when the relative error in L2-norm between two solutions is lower than a
specified threshold or the number of iterations exceed the maximum value.

1.3.8 Preconditioner
In some cases, the problem may become ill-conditioned due to a poor mesh quality. This is caused by a high
aspect ration of elements, usually when the geometry is characterized by one dimension much lower than the
other, such as thin sheets [26]. A block-triangular preconditioner P of equation 1.31 is then used :

P =

−Ĥ W

0 jωµ0S

 (1.34)

where Ĥ is a suitable approximation of H. It can be proven that the corresponding preconditioner PS for the
Schur complement reduced system 1.33 is PS = Ĥ. A sparse approximation of the dense matrix Ĥ is proposed
as preconditioner. It is built by recursively removing the small entries from matrix, but keeping the error in
Frobenius norm ‖ · ‖F within a specified threshold ε : ‖H − Ĥ‖F ≤ ε‖H‖F . Ĥ is then factorized using a sparse
LU factorization and used as left preconditioner for equation 1.33.

1.4 State of the art
Some benchmarks in [1] were conducted on a cylindrical conductive disc on which currents were induced by

a massive coil. However, benchmarks in this project were done on several stacked spheres of same size of both
conductive and non-conductive magnetic materials of radius r = 15 mm, on which currents were induced by a
coil of radius rc = 20 mm, around the center of the system, as show in figure 1.9.

The coil is fed with a 85 kHz current, with a 100 A intensity. The relative magnetic permeability µR is set
to 1000, while the electrical conductivity is σ = 1 · 106 S m−1. There were usually three spheres, but test were
conducted on varying number of spheres and different material combinations as well.

Unless stated otherwise, the reference mesh for the benchmark is made of 816 nodes, 2, 430 edges and 1, 620
triangles. The hybrid scheme is compared to the 2d-axisymmetric finite element solution obtained using the
freeware software FEMM (in dashed lines) in figure 1.11. Convergence rate of the method can be observed in
figure 1.10.

Further comparisons with the FEMM solution in terms of of complexity, global and local accuracy are
available on benchmarks on the cylindrical conductive disc in [1]. Because the numerical solution is based on
the use of dense BEM matrices, both matrix filling and inversion times are critical. For this reason a suitable
sparsification method is required to solve real world problems. Using a specific matrix structure, namely H-
matrices, would thus greatly improve matrix storage, while theoretically compute operations with an almost
linear time complexity (for a N ×N matrix, almost linear complexity is defined as a complexity of O(N logq N)
with q > 0). The goal of this project is thus to implement a suitable H-matrix library in MATLAB language,
to solve matrix systems from BEM-SIBC methods in H-matrix format, or at least use H-matrix results as
preconditioners.

17

Figure 1.9: Example domain of study : obj 1, obj 2
and obj 3 are disconnected regions which can be made

of the same or of different materials

0 10 20 30 40 50 60
iteration #

-8

-6

-4

-2

0

lo
g
1
0
(|

| A
x
-b

 ||
/||

 b
 ||

)

Figure 1.10: Convergence of GMRES solver on
BEM-SIBC matrix system

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Radial distance (m)

-5000

0

5000

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

 (
m

T
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Radial distance (m)

0

1000

2000

3000

4000

5000

6000

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

 (
m

T
)

Figure 1.11: BEM-SIBC hybrid formulation and FEMM on the x and z components of the magnetic flux
density

18

Chapter 2

H-matrix theory

Let, for this chapter and all following chapters, unless specified otherwise, I,J ,K ⊂ N, N,M,n ∈ N, t × s ∈
P(I × J) and 0 ≤ k ≤ N .

2.1 Hierarchical matrices
The main idea behind H-matrices is to reduce computational time and matrix storage by approximating a

matrix A ∈ CN×M by low-rank blocks.

2.1.1 Reminders on Singular Value Decomposition (SVD)
Theorem 2.1.1 (Singular Value Decomposition : existence and uniqueness [27]). Every matrix A ∈ Cn×m

has a singular value decomposition, defined as : A = UΣV H where U ∈ Cm×m and V ∈ Cn×n are unitary,
Σ ∈ Rn×m is diagonal, and its entries are non-negative and in non-increasing order.
Furthermore, the singular values {σj}j are uniquely determined.
Proof. To prove the existence of the SVD, we isolate the direction of the largest action of A, and then proceed
by induction on the dimension of A.
Set σ1 = ‖A‖2. By a compactness argument, there must be a vector v1 ∈ Cn with ‖v1‖2 = 1 and ‖u1‖2 = σ1
where u1 = Av1. Consider any extensions of v1 to an orthonormal basis {vj} of Cn and of u1 to an orthonormal
basis {uj} of Cm, and let U1 and V1 denote the unitary matrices with columns uj and vj , respectively. Then
we have :

UH1 AV1 = S =

σ1 ωH

0 B

 ,

where 0 is a column vector of dimension m− 1, ωH is a row vector of dimension n− 1, and B has dimensions
(m− 1)× (n− 1). Furthermore,∥∥∥∥∥∥∥∥

σ1 ωH

0 B

σ1

ω

∥∥∥∥∥∥∥∥ ≥ σ

2
1 + ωωH = (σ2

1 + ωωH)1/2

∥∥∥∥∥∥∥∥
σ1

ω

∥∥∥∥∥∥∥∥,

implying ‖S‖2 ≥ (σ2
1 + ωωH)1/2. Since U1 and Va are unitary, ‖S‖2 = ‖A‖2 = σ1, so this implies ω = 0.

If n = 1 or m = 1, we are done. Otherwise, the submatrix B describes the action of A on the subspace
orthogonal to v1. By the induction hypothesis, B has an SVD : B = U2Σ2V

H
2 . Now it is easily verified that

A = U1

1 0

0 U2

σ1 0

0 Σ2

1 0

0 V2

H

V H1

is an SVD of A, completing the proof of existence.

For the uniqueness claim, algebraically, we can argue as follows. First we note that σ1 is uniquely determined
by the condition that it is equal to ‖A‖2, as follows from the definition. Now suppose that in addition to v1, there
is another linearly independent vector ω with ‖ω‖2 = 1 and ‖Aω‖2 = σ1. Define a unit vector v2, orthogonal
to v1, as a linear combination of v1 and ω,

v2 = ω − (vH1 ω)v1

‖ω − (vH1 ω)v1‖2
.

19

Since ‖A‖2 = σ1, |Av2‖2 ≤ σ1;but this must be an equality, for otherwise, since ω = v1c+v2s for some constants
c and s with |c|2 + |s|2 = 1, we would have ‖Aω‖2 < σ1. This vector v2 is a second right singular vector of
A corresponding to the singular value σ1; it will lead to the appearance of a vector y (equal to the last n − 1
components of V H1 v2) with ‖y‖2 = 1 and ‖By‖2 = σ1. We conclude that, if the singular vector v1 is not unique,
then the corresponding singular value σ1 is not simple. To complete the uniqueness proof we note that, as
indicated above, once σ1, v1, and u1 are determined, the remainder of the SVD is determined by the action of
A on the space orthogonal to v1. Since v1 is unique up to sign, this orthogonal space is uniquely defined, and
the uniqueness of the remaining singular values and vectors now follows by induction.

Remark With this proof from [27], an additional point is also proven for square matrices : if A is square and
the {σj} are distinct, the left and right singular vectors {uj} and {vj} are uniquely determined up to complex
signs (i.e., complex scalar factors of absolute value 1).

Theorem 2.1.2 (Eckart-Young-Mirsky (partially admitted)). Let k ≥ 0, M ∈ Cn×m be a matrix and M =
UΣV H its SVD. Then, for any rank-k matrix A, we have :

‖M −A‖2 ≥ ‖M − UkΣkV Hk ‖2 = σk+1

‖M −A‖F ≥ ‖M − UkΣkV Hk ‖F =

√√√√ m∑
i=k+1

σ2
i

With Vk, Σk, Uk being subblocks of respectively V , Σ, U containing the first k rows and columns of the orignial
matrix.

Proof. This theorem will only be proven for the euclidean norm here.
Since rank(A) ≤ k, dim(Ker(A)) ≥ n−k. It follows that dim(Ker(A))+dim(Im(Vk+1) ≥ n−k+k+1 = n+1,
thus there exists x ∈ Ker(A) ∩ Im(Vk+1). Then ‖(M −A)x‖22 =

∑k+1
i=1 σ

2
i < x, vi >

2≥ σ2
k+1

∑k+1
i=1 < x, vi >

2=
σ2
k+1.

2.1.2 A quick introduction to ACA method and H-matrices
Given a matrix A ∈ CN×M and a precision ε, the best approximation, according to section 2.1.1, Ã of A such
that

‖A− Ã‖22 ≤ ε2 (2.1)

would be a partial singular value decomposition (SVD) of A :

A ' Ã = Ã(r) =
r∑
i=1

σiuiv
>
i

where σi ∈ R+, ui ∈ CN , vi ∈ CM , i = 1, ..., r and the rank r = r(ε) chosen such that (2.1) is verified.
However, computing the SVD is far too expensive (assuming that N ∼ M , time complexity would be of

O(N3)). That is where the idea of separating A into blocks stems from : each sub-block is smaller and easier
to approximate if needed.

2.1.3 Low rank approximation of matrix blocks

For k ∈ N, let CN×Mk = {A ∈ CN×M |rank(A) ≤ k}.

Theorem 2.1.3 (Outer-product form). A matrix A ∈ CN×M belongs to CN×Mk if and only if there are U ∈ CN×k

and V ∈ CM×k such that
A = UV H

This representation is called outer-product form.

Proof. Let A ∈ CN×M be a matrix. Let us first suppose that there are U ∈ CN×k and V ∈ CM×k such that
A = UV H . Then, by using some basic rank properties, it follows that

rank(A) = rank(UV H) ≤ min(rank(U), rank(V H))
≤ min(min(N, k),min(M,k)) ≤ k

(2.2)

Thus A ∈ CN×Mk .

Let us assume now that A ∈ CN×Mk . One version of this proof can be written using linearly independent
column vectors to represent A, which is actually quite similar to the path that is taken here : to make another
good use of section 2.1.2, this proof will use the theorems previously proven. According to theorem 2.1.1,

20

there exists U ∈ Cm×m and V ∈ Cn×n unitary, Σ ∈ Rn×m diagonal, and its entries are nonnegative and in
nonincreasing order such that A = UΣV H . Then, since A is of rank ≤ k, it has maximum k nonzero singular
values which are stored in Σ as σ1, ..., σk. Thus, ‖A−UkΣkV Tk ‖2 = σk+1 = 0. This entails that A−UkΣkV Tk = 0
using the properties of ‖ · ‖2. Thus, if Ũ = UkΣk ∈ CN×k and Ṽ = Vk ∈ CM×k, A = Ũ Ṽ H .

Definition 2.1.1. A matrix A ∈ CN×Mk is called a matrix of low rank if

k(N +M) < NM

Low-rank matrices will always be represented in outer-product form [28].

2.1.4 Singular Value Decomposition of low-rank matrices

For a low-rank matrix A = UV H ∈ CN×Mk , a method using QR decompositions was introduced in [29] and
enables an efficient and not-to-expensive computation of the SVD. Assume the QR decompositions U = QURU
of U ∈ CN×k and V = QVRV of V ∈ CN×k computed. The outer product RURHV of the two k × k upper
triangular matrices RU and RV is then decomposed using the SVD

RUR
H
V = Û Σ̂V̂ H .

Since QU Û and QV V̂ both have orthonormal columns,

A = UV H = (QU Û)Σ̂(QV V̂)H

is an SVD of A.

2.1.5 Block cluster tree and partitioning
Let I = {1, ..., N} and J = {1, ...,M}. Typically, A can be approximated by low-rank matrices only on certain
sub-blocks of an appropriate partition of I × J [30].

Finding a suitable partition P ⊂ P(I ×J) implies two contrary conditions : having a partition fine enough
so that block can be successfully approximated and having as few blocks as possible. A good partition should
allow approximants of logarithmic-linear complexity and be computed with almost linear complexity.

The admissibility condition is a set of conditions a block b ∈ P should meet in order to be approximated by
a matrix of low-rank :

• if b is admissible, then the singular values of Ab decay exponentially;

• the admissibility condition can be checked for each block t×s ∈ P(I×J) with a complexity of O(|t|+ |s|);

• if b is admissible, then any subset of b is, too.

Definition 2.1.2. Let nmin ∈ N. A partition P is called admissible if each block t × s ∈ P is either small or
admissible. It is called small if min{|t|, |s|} ≤ nmin.

Figure 2.1: Block division

The candidates (t, s) ⊂ I × J for a suitable partition of I × J will be stored in cluster trees TI and TJ .
Assuming n = 2p with p ∈ N and nmin ∈ N is the minimum block size for this example, the root of TI is the
index set I(0)

1 = {1, ..., n}. I(0)
1 has two successors I(1)

1 = {1, .., n2 } and I
(1)
2 = {n2 + 1, .., n}. Each node t with

more than nmin indices has exactly two successors; each one containing respectively the first and second half
of its indices. If t does not have more than nmin indices, then it is a node; nmin thus controls the depth of the
cluster tree. We denote as S(t) the sons of a node t [31].

21

To find an admissible partition of I ×J , a so-called block cluster tree TI×J is used. To restrict the number
of possible partitions, only the ones which are induced from subdividing rows and columns of the original matrix
are considered. These TI×J are defined by the following mapping SI×J :

SI×J =
{
∅ if t× s is admissible or SI = ∅ or SJ = ∅
SI(t)× SJ (s) else

(2.3)

The leaves of TI×J thus constructed are an admissible partition.

2.1.6 The set of Hierarchical Matrices
Definition 2.1.3. Let TI×J be a block cluster tree for the index sets I × J . the set of H-matrices is defined
as :

H(TI×J , k) := {A ∈ CI×J | rank(A|t×s) ≤ k for all t× s admissible leaves of TI×J }.

Elements from H(TI×J , k) will often be called H-matrices.

For an optimal matrix storage and treatment, the outer-product form from 2.1.3 should be used for admissible
blocks. Some easy consequences follow :

Lemma 2.1.4. Let A ∈ H(TI×J , k). Then

1. any submatrix Ab, b ∈ TI×J , belongs to H(Tb, k);

2. the transpose AT and the Hermitian transpose AH belong to H(TI×J , k), provided that the admissibility
condition is symmetric; i.e., any bloc t× s is admissible if t× s is admissible.

For two index sets I and J and P a partition of I × J , let

πI = {t ∈ TI | ∃s ∈ TJ , t× s ∈ P, ∀t′ ⊂ t, ∀s′ ∈ TJ : t′ × s′ /∈ P}

πI is thus the finest partition of I made from clusters appearing in the partition P .

2.2 Cross approximation of admissible H-matrix blocks
In this section, one of the main methods we used to approximate an admissible matrix block up to a given

error ε will be explored. The other one employed in this project was Singular Value Decomposition (SVD) as
explained in 2.1.2, which is far less computationally expensive if used only on admissible blocks rather than on
the whole matrix [28, 31].

Let ε > 0 be a given error and k ∈ N a maximum rank for this section.

2.2.1 Cross approximation
Let t × s ⊂ I × J , and A ∈ Ct×s be a matrix block. An idea presented in [32] under the name skeleton
approximation is to choose small subsets s̃ ⊂ s and t̃ ⊂ t of pivot columns and rows so that for a matrix
G ∈ Ct̃×s̃, there holds:

‖A− Ã‖2 ≤ ε

Ã = A|t×s̃GA|t̃×s, rank(Ã) ≤ min(#s̃,#t̃)

Figure 2.2: Cross approximation of rank 3

22

Theorem 2.2.1 (Existence of cross-approximations). Let A,R ∈ Ct×s be matrices with ‖A − R‖ ≤ ε and
rank(R) ≤ k. Then there exists a subset s̃ ⊂ s of pivot columns and a subset t̃ ⊂ t of pivot rows ans a matrix
G ∈ Ct̃×s̃ with

‖A−A|t×s̃GA|t̃×s‖2 ≤ ε(1 + 2
√
k(
√

#t+
√

#s)).

A|t×s̃GA|t̃×s is called a pseudoskeleton component.

Proof. Let A,R ∈ Ct×s be matrices with ‖A − R‖ ≤ ε and rank(R) ≤ k. The theorem will first be proven for
a t̃, s̃ and G which verify the inequality

‖A−A|t×s̃GA|t̃×s‖2 ≤ ε(1 + (
√
e(k,#t) +

√
e(k,#s)))2),

with
e(k,#t) = 1

min
B∈C#t×k,BBH=1

max
P submatrix of B

σmin(P)

where σmin(P) denotes the minimal singular value of P . Estimates for e(k,#t) and e(k,#s) will then complete
the proof.
Consider the decomposition R = UΣV the SVD of R defined like in theorem 2.1.1. Let Û , V̂ ∈ Rk×k be
submatrices of U, V respectively such that

‖Û−1‖2 ≤ e(k,#t) (2.4)
‖V̂ −1‖2 ≤ e(k,#s) (2.5)

We know select k rows and k columns, denoted as t̃ ⊂ t and s̃ ⊂ s, determined by the choice of Û and
V̂ , respectively. Let F = A − R, C = A|t×s̃ and Fc denote t × s̃ submatrices, M = A|t̃×s and FM denote
t̃ × s submatrices of A and F respectively, which correspond to the selected rows and columns. Let Â and F̂
denote the t̃× s̃ submatrices which occupy the intersections of these rows and columns in A and F . Then any
pseudoskeleton component CGM , G ∈ Ct̃×s̃, can be presented in the following form :

CGM = (UΣV̂ + FC)G(ÛΣV + FM) = UΣV̂ GÛΣV + E (2.6)

with

E = (UΣV̂ + FC)GFM + FCG(ÛΣV + FM)− FcGFM
= UÛ−1(ÛΣV̂ G)FM + FC(GÛΣV̂)V̂ −1V + FCGFM

= UÛ−1(R̃G)FM + FC(GR̃)V̂ −1V + FCGFM

(2.7)

where R̃ = ÛΣV̂ = Â− F̂ . The first equations can also be rewritten in terms of R̃ :

R = UÛ−1R̃V̂ −1V

CGM = UÛ−1(R̃GR̃)V̂ −1V + E

Consider now the SVD of R̃ : R̃ = Ũ Σ̃Ṽ with Σ̃ = (diag)(σ̃1, ..., σ̃r), Ũ and Ṽ unitary. Let τ > 0 be a threshold
which will be specified later. Introducing the notation :

Σ̃τ = diag(σ̃τi), σ̃τi =
{
σ̃ if σ̃ ≥ τ,
0 otherwise,

(2.8)

Σ̃+
τ = diag(σ̃+

τi), σ̃+
τi =

{
σ̃−1
i if σ̃i ≥ τ,

0 otherwise,
(2.9)

R̃τ = Ũ Σ̃τ Ṽ , (2.10)
R̃+
τ = Ṽ HΣ̃+

τ Ũ
H , (2.11)

One can see that R̃R̃+
τ R̃ = R̃τ , and moreover, this implies that ‖R̃R̃+

τ ‖2 ≤ 1, ‖R̃+
τ R̃‖2 ≤ 1. If we set G = R̃+

τ

then the three previous relations imply that ‖E‖2 ≤ ε(‖Ũ−1‖2+‖Ṽ −1‖2+ ε
τ). Using this inequality in conjunction

with R and CGM rewritten in terms of R̃, and R̃R̃+
τ R̃ = R̃τ , one can get the estimate :

‖A− CGM‖2 ≤ ε+ τ‖Ũ−1‖2‖Ṽ −1‖2 + ε2

τ
+ ε‖Ũ−1‖2 + ε‖Ṽ −1‖2.

Setting τ = ε√
‖Ũ−1‖2‖Ṽ −1‖2

completes the first part of the proof.

A technical lemma will help getting the right estimate for the second part (proof in appendix B):

23

Lemma 2.2.2. For k,∈ N, k ≤ n, e(k, n) defined above satisfies e(k, n) ≤
√
k(n− k) + 1.

Thus, using lemma B.0.1 and the first part of the proof, it follows that :

‖A−A|t×s̃GA|t̃×s‖2 ≤ ε(1 + (
√
e(k,#t) +

√
e(k,#s))2)

≤ ε(1 + 2(e(k,#t) + e(k,#s)

≤ ε(1 + (2(
√
k(#t− k) + 1 +

√
k(#s− k) + 1))

≤ ε(1 + (2
√
k(
√

#t− k + 1/k +
√

#s− k + 1/k))

≤ ε(1 + (2
√
k(
√

#t+
√

#s))

Remark To match with the estimations given by the SVD, similar results can also be proved using the Frobenius
norm, see [28], or just by using norm equivalents (∀n ∈ N, ∀A ∈ Cn×n, ‖A‖2 ≤ ‖A‖F ≤

√
n‖A‖2).

In order to fully explain the adaptive cross approximation algorithm, fully- and partially pivoted cross
approximations will first be examined. They both successfully compute rank one approximations.

2.2.2 Cross Approximation with full pivoting
Let A ∈ Ct×s be given. A rank one-approximation of A using full pivoting can be obtained in two steps,
provided that all entries of A have been previously computed :

1. Find (i, j) ∈ t× s such that |Ai,j | is the maximal entry of A. Set δ = Ai,j ;

2. Compute ak = Ak,j , k ∈ t, bl = Ai,l
δ , l ∈ s

Then R1 = abH is a matrix of rank one meeting the conditions of theorem 2.2.1. If k > 1, and rank one to
k− 1 approximations of A, a1(b1)H , ..., ak−1(bk−1)H have already been computed,then a rank k approximation
Rk can be obtained by applying the above steps to A−

∑k−1
N=1 a

N (bN)H .

This process can be summed up in the following algorithm, which takes A ans k as an input and overwrites
it to give Rk =

∑k
N=1 a

N (bN)H , the rank k approximation of A, as an output :

Algorithm 2: Cross approximation with full pivoting
for N = 1, ..., k do

Compute the maximal entry in modulus

(iN , jN) = argmax
(i,j)

|Ai,j |, δ = AiN ,jN

if δ = 0 then
the algorithm terminates with the exact rank N − 1 representation RN−1 of the input matrix A.

else
Compute the entries of the vectors aN , bN : (aN)i = Ai,jN , i ∈ t, (bN)j = AiN ,j/δ, j ∈ s.
Subtract the rank one approximation Ai, j = Ai,j − (aN)i(bN)j , i ∈ t, j ∈ s

end
end

Lemma 2.2.3 (Exact reproduction of rank k matrices). Let n,m ∈ N∗. Let A ∈ Cn×m be a matrix of rank
exactly k. Then Rk =

∑k
N=1 a

N (bN)H from algorithm 2 equals A. Proof in appendix B.

Lemma 2.2.4 (Interpolation property). Let A ∈ Ct×s be a matrix of rank at least k ≥ 1 and Rk the cross
approximation from algorithm 2. Then, for any row pivot index i∗ and any column pivot index j∗ there holds :

Rkej∗ = At×{j∗} and eHi∗Rk = A{i∗}×s

i.e., Rk exactly reproduces the pivot columns and rows of A. Proof in appendix B.

24

Lemma 2.2.5. The cross approximation of a matrix A ∈ Ct×s of rank at least k ≥ 0 by the matrix Rk from 2
is of the form

Rk :=
k∑

N=1
aN (bN)H = A|t×Pcols(A|Prows×Pcols)−1A|Prows×s

Proof in appendix B.

Unfortunately, the determination of pivot indices in this algorithm makes it of quadratic complexityO(k#t#s)
for a matrix in Ct×s of rank k, which does not make it efficient enough for large scale problems.

2.2.3 Cross approximation with partial pivoting
In algorithm 2, determining the pivot pairs and updating the matrix are the bottleneck of the process. The
first step in optimizing the previous algorithm is thus to change the determination of the pivot pair, so that
computing all the entries of the matrix A is not needed. A is also no longer updated inside the agorithm, and
a temporary representation of the residual is used instead.

The main idea behind the new pivot choice is partial pivoting : maximizing |Ai,j | only for one of the two
indices i or j and keeping the other one fixed. In other words, determining the maximal element in modulus
over one row or column.

Algorithm 3: Cross approximation with partial pivoting
Set i∗ = min{i ∈ t}, N = 1, n = #t and P = {} the set of row pivot indices. while N ≤ k do

Compute the maximal entry in modulus

j∗ = argmax
j∈s

|Ai∗,j |, δ = Ai∗,j∗ −
N−1∑
ν=1

(aν)i∗(bν)j∗

if δ = 0 then
if #P = then

the algorithm terminates with the exact rank N − 1 representation RN−1 of the input matrix
A.

end
else

Compute the entries of the vectors aN , bN : (aN)i = Ai,j∗ −
∑N−1
ν=1 (aν)i(bν)j∗ , i ∈ t,

(bN)j = (Ai∗,j −
∑N−1
ν=1 (aν)i∗(bν)j)/δ, j ∈ s.

end

P = P ∪ {i∗}

Choose i∗ ∈ t \ P, e.g., i∗ = argmaxi∈t\P |(bN)i,j∗ |
end

For δ 6= 0 the arguments of lemma B.0.2 apply and the rank of the remainder is reduces by one. However,
this condition δ 6= 0 can also be a bottleneck. This technique is thus not suited for sparse matrices, but can be
efficient on dense BEM ones.

2.2.4 Adaptive Cross Approximation (ACA)
Given an accuracy ε, another variant of the previous algorithms would be to determine a rank k such that
the approximation is at a distance ε of the original matrix A using a chosen norm. The rank is determined
adaptively, hence the name adaptive cross approximation. Just like before, the chosen norm here will be ‖ · ‖2
and all results can easily be adapted to ‖ · ‖F to compare to the approximation of a matrix by the SVD.

A good heuristic is to estimate the remainder ‖A − Rk‖2 by a rank one approximation R. Since, in the
algorithm, a successive rank one approximation is used, one can estimate :

‖M −Rk‖2 . ‖M −Rk−1‖2 ≈ ‖Rk −Rk−1‖2 = ‖ak(bk)T ‖2

With ak and bk constructed by in algorithm 3, let :

εabs(k) = ‖ak‖2‖bk‖2, εrel(k) = ‖ak‖2‖bk‖2/‖a1‖2‖b1‖2.

25

For k = 0, εrel(0) = εabs(0) = ∞. These functionals can be used to estimate the (absolute or relative) error
‖A−Rk‖2
The stopping criterion N ≤ k is then replaced by either εrel(N − 1) ≤ ε or εabs(N − 1) ≤ ε.

If the matrix A stems from the evaluation of a smooth function at some points in Rd, d ≥ 1, then [33], [34]
prove that this adaptive cross approximation algorithm converges. We will not cover this proof in detail in this
report, as the matrices used here stem from basic smooth functions, such as f : x 7→ 1

x+ε , ε > 0 on R+ for the
simplest examples. In this version, a maximum rank for the approximation was also added, to ensure that the
algorithm would not be too computationally expensive, in case the ACA method had convergence issues.

Here is the algorithm, from [28], that was implemented in Matlab for this project :

Algorithm 4: Adptive Cross approximation with partial pivoting
Inputs : f kernel function from which stems A ,t,s,η precision ,kMax maximum rank allowed
Outputs : ak, bk approximation vectors, k rank of the approximation, ε corresponding approximation
error
Set i∗ = min{i ∈ t}, N = 1, n = #t and P = {} the set of row pivot indices, k = 0, ε =∞.
while ε > η and k < kMax do

Compute the maximal entry in modulus

j∗ = argmax
j∈s

|Ai∗,j |, δ = Ai∗,j∗ −
N−1∑
ν=1

(aν)i∗(bν)j∗

if δ = 0 then
if #P = then

the algorithm terminates with the exact rank N − 1 representation RN−1 of the input matrix
A.

end
else

Compute the entries of the vectors aN , bN : (aN)i = Ai,j∗ −
∑N−1
ν=1 (aν)i(bν)j∗ , i ∈ t,

(bN)j = (Ai∗,j −
∑N−1
ν=1 (aν)i∗(bν)j)/δ, j ∈ s.

end
Update rank k = k + 1.
Update ε according to stopping criterion above.

P = P ∪ {i∗}

Choose i∗ ∈ t \ P, e.g., i∗ = argmaxi∈t\P |(bN)i,j∗ |
end

2.3 H-matrix algebra
2.3.1 Rounded addition
The sum of two matrices A,B ∈ H(TI×J , k) will usually be in H(TI×J , 2k) but not in H(TI×J , k). The reason
for this is that CN×Mk is not a linear space : if two matrices of rank lower or equal to k are added, the rank of
their sum is only lower or equal to 2k. That is why a truncated (or rounded) addition is used.

Definition 2.3.1 (Truncation Tk and Tε). Let A ∈ CN×M be a matrix, and ‖ · ‖ a matrix norm over CN×M .

1. Let k ∈ N. One can define the truncation operator Tk : CN×M → CN×Mk , A 7→ Ã where Ã is a best
approximation of A in the set CN×Mk (not necessarily unique) ;

2. Let ε > 0. One can define the truncation operator Tε : CN×M → CN×Mk , A 7→ Â where Â is a best
approximation of A in the set CN×Mk and k = min{k̂ ∈ N∗|∃Â ∈ CN×Mk , ‖A− Â‖ ≤ ε‖A‖}.

Ã is called a truncation of rank k, and Â an adaptive truncation of A with accuracy ε.T absε is the respective
truncation operator with absolute truncation error ε.

Definition 2.3.2 (Extension of the truncation Tk for H-matrices). Let TI×J be a block cluster tree. The
truncation operator is defined as :

Tk : CN×M → H(TI×J , k), A 7→ Ã

26

blockwise for all leaves t× s ∈ TI×J by

Ã|t×s =
{
Tk(Ã|t×s) if t× s is admissible
Ã|t×s otherwise.

Lemma 2.3.1. The operator Tk maps a matrix A ∈ CI×J to a best approximation Ã ∈ H(TI×J , k) with respect
to the Frobenius norm : ∥∥A− Ã∥∥

F
= min
M ′∈H(TI×J ,k)

‖A−A′‖F

Proof in appendix B.

Definition 2.3.3 (Formatted addition). Let TI×J denote a block cluster tree and k ∈ N. The formatted
addition of H-matrices A,B ∈ H(TI×J , k) is defined by:

A⊕B = Tk(A+B).

If the rank k in consideration is not evident then it can be written ⊕k instead of ⊕.

2.3.2 Agglomerating low-rank blocks
For memory-saving purposes, neighboring low-rank blocks can be unified. Assume a 2× 2 block matrixA1 A2

A3 A4

 ≈ UXV H
consisting of four low-rank matrices Ai = UiXiV

H
i with Ui, Vi, i = 1, ..., 4 each having k orthnonormal columns,

is to be approximated by a single matrix A = UXV H ∈ CN×Mk . SinceA1 A2

A3 A4

 =

A1

+

 A2

+

A3

+

A4

 ,

this problem may be regarded as a rounded addition of four low-rank matrices [30].Therefore, a best approxi-
mation in CN×Mk can be computed using the truncated SVD on a QR decomposition of low-rank matrices like
in section 2.1.4.
In this rounded addition, the presence of zeros needs to be taken into account. SinceA1 A2

A3 A4

 = ÛX̂V̂ H , where Û =

U1U2

U3U4

 , V̂ =

V1 V2

V3 V4

 ,

and X̂ = (Xi, i = 1, .., 4), it satisfies to compute the QR decompositions [U1, U2] = Q1R1, [U3, U4] = Q2R2,
[V1, V3] = Q3R3 and [V2, V4] = Q4R4.
Let Ri = [R′i, R′′i] be partitioned with R′i, R′′i ∈ Ck×2k, then

ÛX̂V̂ H =

Q1

Q2

R′1X1R

′
3
H R′′1X2R

′
4
H

R′2X3R
′′
3
H R′′2X4R

′′
4
H

QH3

QH4

 .

2.3.3 Multiplication
Definition 2.3.4 (Formatted multiplication). Let TI×J denote a block cluster tree and k ∈ N. The formatted
multiplication of H-matrices A,B ∈ H(TI×J , k) is defined by :

A�B = Tk(A ·B).

The formatted multiplication is easy to write formally, but much harder to compute. Indeed, the block
structure of the original H-matrices is not retained in the multiplication, and can become rather complicated.

Two options are then available: Either trying to preserve the block structure and agglomerate subblocks
inside of it, or creating a product block cluster tree. The first solution was the one originally implemented in
the Matlab library from part 4, but it ended up not being the optimal solution for this project. The second
one, used in both libraries explored in this paper, will be explained more in detail.

27

Definition 2.3.5 (Product tree). The product tree TIJK of TI×J and TJ×K is inductively defined by:

1. I × K is the root of TIJK;

2. The sets of sons of blocks t× s ∈ TIJK from the lth level of TIJK is

SIJK(t× s) = {t′ × s′|∃r ∈ T (l)
J , r′ ∈ T (l+1)

J : t′ × r′ ∈ SJ×K(r × s)}.

Figure 2.3: Example product tree

2.3.4 Inversion
Definition 2.3.6 (Preliminary formatted inversion). Let TI×J be a block cluster tree and k ∈ N. The
preliminary formatted inversion operator is defined as

Ĩnv : {A ∈ CN×N |rank(A) = N} → H(TI×J , k), A 7→ Tk(A−1).

Fully inverting a whole matrix is far too computationally expensive, so the algorithms presented in section
3 will compute an approximation of the inverse. While not necessarily being the best approximation, it will not
need to invert the matrix exactly. This inversion will be done by the use of the equation :

A−1 =

A−1
11 +A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

 , A =

A11 A12

A21 A22

 ∈ CN×N (2.12)

where S = A22−A21A
−1
11 A12. If the inversion of the submatrices A11 and S is already done, only multiplications

and additions of subblocks need to be performed, and they can be replaced by their formatted versions. This
recursively leads to an approximate inverse InvH(A), called the formatted inverse.

Most often, computing the actual inverse will be avoided, and replaced by other methods such as an LU
decomposition.

2.3.5 LU Decomposition
Sometimes, only a method to perform the matrix-vector multiplication b 7→ A−1b, A ∈ CN×N (i.e. to solve
the system Ax = b) is needed. In that case, computing an LU decomposition of A is sufficient. The original LU
decomposition is fully explained in C. Only an approximate one, for H-matrices, called H-LU will be studied
in this section.

Figure 2.4: Example H-matrix structure of an LU decomposition

This decomposition is of the form A ≈ LU where L and U are stored in the H-matrix format.

28

Let A ∈ H(TI×I), and t ∈ TI \ L(TI). Exploiting the hierarchical structure of Att :

Att =

At1t1 At1t2

At2t1 At2t2

 =

Lt1t1 0

Lt2t1 Lt2t2

Ut1t1 Ut1t2

0 Ut2t2

 ,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block Att is recursively defined
by :

1. Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 ;

2. Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 ;

3. Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 ;

4. Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 − Lt2t1Ut1t2 .

If a block t× t ∈ TI×I is a leaf, the usual pivoted LU decomposition is used.
Steps 1. and 4. require the computation of two LU decompositions of half the original size. Step 2. needs to
be solved as a triangular H-matrix system for a matrix. If t × s ∈ TI×I is not a leaf, the following method is
used to solve LttBts = Ats for Bts (with t1, t2 and s1, s2 the sons of t and s respectively) :Lt1t1 Lt1t2

Lt2t1 0

 =

Bt1s1 Bt1s2

Bt2s1 Bt2s2

At1s1 At1s2

At2s1 At2s2

leads to

Lt1t1Bt1s1 = At1s1 , (2.13)
Lt1t1Bt1s2 = At1s2 , (2.14)
Lt2t2Bt2s1 = At2s1 − Lt2t1Bt1s1 , (2.15)
Lt2t2Bt2s2 = At2s2 − Lt2t1Bt1s2 , (2.16)

which is again a form of step 2. If t × s is a leaf, the usual block-forward substitution is applied. Step 3.
can be solved similarly to step 2. by using block-backward substitution.

If the matrix A is symmetric positive definite, an H-matrix version of the Cholesky decomposition can be
implemented instead, as explained in [30]. This will most often not be the case in this project, so it will not be
covered here.

2.3.6 Using H-matrices for preconditioning
Solving an equation such as Ax = b usually leads to considering a sequence of systems Anxn = bn, n → ∞,
where each An ∈ CN×N is invertible. Using a direct solver such as Gaussian elimination to a fully populated
system leads to huge complexities in time and space.
In principle, the hierarchical LU decomposition from section 2.3.5 can be used to compute an approximate
LU decomposition with almost linear complexity. H-matrices, however, can be multiplied with a vector with
complexity O(kn logn). Iterative Krylow-subspace methods such as GMRES will hence be faster provided that
the number of iterations is small enough.
The convergence of Krylow-subspace methods is determined by spectral properties of the matrix A, which
may thus cause the H-matrix approximant AH to be ill-conditioned, which is why the use of a preconditioner is
required here. Since H-matrices provide efficient approximations to the LU decomposition, they are particularly
suited for preconditioning. If AH ≈ LHUH, a preconditioner C = (LHUH)−1 can be used on the left- or right-
hand side to solve the respective equivalent systems: CAHx = Cb or AHCx̃ = b, with the solution obtained
as x = Cx̃. It can be proven [30] that a low-accuracy approximate inverse or LU is sufficient to to guarantee
a bounded number of preconditioned iterations of appropriate iterative schemes. Moreover, this number of
iterations solely depends on the chosen accuracy for the solver.

29

Chapter 3

The H-matrix library in Matlab
language : hmtxLib

The code implementing the BEM-SIBC method is developed in the Matlab environment, with some computa-
tional kernels written in C language. The H-matrix library in Matlab language, namely hmtxLib, is the first
library that was implemented and used in this project for mathematical operations on H-matrices.

This library is a full implementation of H-matrices and of their arithmetics. Some of the core functions
were coded to create or change the data structure, fill the matrix, check memory usage, plot the structure and
check whether an input is an H-matrix. Then, another set of functions was created for compression purposes: a
function coarsening the matrix, hence reducing the accuracy and precision, a reduced singular value decompo-
sition (rSVD) following [35] for an easy storage of the matrix, and the ACA method from [28]. Finally, various
matrix operations, such as addition, multiplication, getting the upper- or lower-triangular part of the matrix,
or transposition were implemented. The latest codes were created to solve matrix systems. After computing
the H-inverse of the H-matrix, matrix-vector solvers and H-LU decomposition were implemented.

3.1 H-matrix implementation : creating and filling an H-matrix
structure

In this library, H-matrices are created using a function called hmtx_cluster which creates an H-matrix
structure from a cluster of points, and an optional second cluster of points. In the previous electromagnetic
model 1.3, two points in the system which are at a shorter distance interact more than two points which are
further apart. The goal of this library is to create, from these clusters, an efficient matrix representation of the
value of interest between all the points.

hmtx_cluster matrixcluster clusteradmissibility

hmtx_create

dissect3d

Figure 3.1: Library structure for matrix cluster creation

An H-matrixM needs to be stored in an efficient way, so as to actually reduce calculation time and memory
usage. Each matrix is thus stored by n×m blocks.
For each M |n×m block there are three available data types:

• An n×m non-admissible block that can be subdivided, supermatrix, which is stored as a 2×2 cell array.
Inside of each cell, there is another block;

• A full n×m block, fullmatrix, which is a Matlab array;

30

• For admissible blocks, a rank-k block, rkmatrix, in which only U (an n× k matrix, where k is the rank
of the low-rank approximation) and V (an m× k matrix) from the ACA decomposition are stored.

Each block H is itself an H-matrix, which has several attributes, assigned in the function hmtx_create:

• H.type which can be supermatrix, fullmatrix or rkmatrix;

• H.irow and H.jcol, global indices of rows and columns of H (following the reordering explained below);

• H.nrow and H.ncol, number of rows and columns of H;

• H.M containing, if H is not admissible, a 2 × 2 cell array if H can be subdivided, a full Matlab array
otherwise;

• H.U, H.V, H.k containing, if H is admissible, the ACA approximation H = UV H and the rkmatrix
rank;

• H.eps the tolerance of the ACA method ε;

• H.kMax the maximum rkmatrix rank allowed.

Blocks are divided using dissect3d 5, a function which takes points coordinates and splits a cluster into
two sets of points according to distance.

Algorithm 5: dissect3d : splitting a cluster of points into two sub-clusters according to distance
Inputs : P points coordinates
Outputs : idx1, idx2 indices of the two sub-clusters
Compute Xc cluster center
Compute C covariance matrix of the cluster
Get eigenvalues D and eigenvectors V of C
λ = max(D), Vmax = max(V) Maximum eigenvalue and eigenvector
idx1 = {p ∈ P | (p−Xc)Vmax > 0}
idx2 = {p ∈ P | (p−Xc)Vmax ≤ 0}

idx1 and idx2 then give rise to four sub-blocks A11, A12, A21 and A22, in which the represented indices are
stored as a list.

To determine block types, several conditions are then checked. First, using the function clusteradmissibility,
which takes as inputs two clusters of points and an admissibility parameter η, the admissibility of the block is
determined.

Algorithm 6: clusteradmissibility
Inputs : P1, P2, η clusters of points and admissibility parameter (by default : η = 2)
Outputs : logical variable (1 if admissible, 0 otherwise)
Create cluster bounding boxes minP1, maxP1, minP2, maxP2
Compute Z origin of P1
Compute clusters diameters D1 and D2
Compute d euclidean distance between the two clusters
return min(D1, D2) < ηd

If H is admissible, then it is of rkmatrix type. Otherwise, its size needs to be checked : if the block size
is smaller than Nmin, minimum block size allowed (by default, Nmin = 32), then H is a fullmatrix. If it is
bigger, H is a supermatrix.

Once the whole structure of the H-matrix is created, it can then be filled using hmtx_fill. This function
first fills the H-matrix and then recompresses rkmatrix and fullmatrix blocks using hmtx_compress. It takes
as inputs the cluster tree created in the previous function, the kernel function of the matrix and a tolerance ε.

If H is a supermatrix, the function is called recursively. If H is a fullmatrix, H is filled by evaluating the
kernel function at each point of the cluster, and ε is set to 0. Lastly, if H is an rkmatrix and ε =∞, then the
ACA approximation is set as empty blocks and the rank k of the approximation is equal to 0. Otherwise, H.U,
H.V, H.k and H.eps are updated using the ACA algorithm 4. H is then recompressed using rSVD_rkmatrix
which computes a truncated SVD of H using ε and kMax 2.1.4. hmtx_compress then loops over the H-matrix

31

hmtx_fill fillhmatrix fkern

rSVD_rkmatrix

aca

Figure 3.2: Library structure for H-matrix filling

and unifies four adjacent fullmatrix blocks, or compresses four adjacent rkmatrix blocks, if it optimizes the
storage, as explained in section 2.3.2.

Once the H-matrix is created and filled, it can then be used in mathematical operations, be modified and
plotted.

3.2 H-matrix representation
These functions are at the core of the library, are they are used to evaluate results or prepare the matrix for

an arithmetical operation.

3.2.1 Changing the type of an H-matrix block with hmtx_changeformat

hmtx_changeformat converts a genericH-matrix to anotherH-matrix with a different cluster tree. This function
takes as inputs and input H-matrix and an output one with a different format. The output H-matrix is then
returned filled with the entries of the input one. depending on the type of the input and output matrices,
different sub-routines are used :

• super2full which recursively converts every sub-block to a fullmatrix (using rkmatrix2full) and then
compresses all four blocks into one using hmtx_compress;

• super2rkmatrix which works in the same way as the previous function, but using full2rkmatrix instead;

• rkmatrix2full which creates a full block in a matrix M from M.U ×M.V ′, i.e. computing the multipli-
cation of the ACA blocks;

• full2rkmatrix computes a truncated SVD of the input matrixM given a maximum rank. If the truncated
SVD is USV , then A.U = US and A.V = V ;

• rkmatrix2super splits an rkmatrix into four sub-blocks of equal size. each block is itself an rkmatrix
which is stored as a sub-block of the ACA of the original matrix;

• full2super works exactly like rkmatrix2super, but matrix blocks are fullmatrix sub-blocks of the
original fullmatrix.

3.2.2 Copying a cluster tree with hmtx_copystruct

The function hmtx_copystruct takes as input an H-matrix M and creates an empty matrix with the same
structure that the one of M . This function recursively creates empty blocks that exaclty follow the structure
of the input matrix.

3.2.3 Fullmatrix times H-matrix product using hmtx_MxH

hmtx_MxH performs the fullmatrix times H-matrix product. This recursive function takes an H-matrix H and
a full matrix M as inputs, and returns A = MH using global indices of H stored in H.irow and H.jcol. At
each step, the function adds to the (originally full of zeros) matrix A the product of M with a block of H, only
taking in M the global indices present in the block of H.

3.2.4 Plotting an H-matrix
An H-matrix is plotted by outlining each sub-block with black lines. Full blocks are filled with white, while
rk blocks are filled with a color corresponding to their rank, determined by a scale shown on the right of the
matrix.

This matrix was created by calculating the euclidean distance between points on a meshed sphere.

32

0 200 400 600

0

100

200

300

400

500

600

700
 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

Figure 3.3: Example plot of a 700× 700 H-matrix, block colors correspond to the rank written on the scale,
full blocks are shown in white

3.2.5 Coarsening an H-matrix
The function hmtx_coarsening recursively coarsens an H-matrix to a new tolerance or maximum rank. It
simply removes lines and columns from the ACA decomposition of low-rank blocks.

3.3 Arithmetics
3.3.1 Simple operations
Two functions, hmtx_tril and hmtx_triu were coded to respectively extract the lower and upper triangular
parts of anH-matrix. Then, the transposition and the hermitian of a matrix were implemented. Those functions
simply work recursively over the matrix blocks. The hermitian of a matrix H will be denoted as H ′ in the codes
here.

3.3.2 Addition and subtraction
hmtx_add takes as inputs two H-matrices A,B and a sign t (+1 or −1) and returns A + tB. A and B must
have the same cluster tree in order for the addition to be successfully computed.

Algorithm 7: hmtx_add
Inputs : A,B, t
Outputs : C = A+ tB
if A and B are supermatrices then

Create C, supermatrix. Call the function recursively on each block:
C11 = A11 + tB11
C12 = A12 + tB12
C21 = A21 + tB21
C22 = A22 + tB22

else
if A and B are fullmatrices then

Create C, fullmatrix. C.M = A.M+t*B.M, C.eps = max(A.eps, B.eps)
else

Create C, rkmatrix. C.U = [A.U, t*B.U], C.V = [A.V, B.V], C.k=A.k+B.k. Recompress C
using rSVD_rkmatrix.

end
end
return C

This algorithm follows the rules of the rounded addition explained in section 2.3.1.

33

3.3.3 Multiplication
hmtx_mult takes as inputs two H-matrices A,B, and the desired output cluster tree C and returns AB. In
order to have a fully optimized algorithm, every possible combination of H-matrix block type is tested.

Algorithm 8: hmtx_mult
Inputs : A,B,C
Outputs : C = AB
if A,B are supermatrices then

Create Ctmp as a supermatrix of size A.irow× B.jcol. for i ∈ {1, 2} do
for j ∈ {1, 2} do

Create Ca, Cb as supermatrices of size A.irow× B.jcol. Call function recursively :
Ca = Ai,1B1,j
Cb = Ai,2B2,j
Add resulting blocks : Ctmpi,j = Ca + Cb

end
end
Change matrix format to goal format : C = hmtx_changeformat(Ctmp,C)

end
if A is a fullmatrix and B is a supermatrix then

Create Ctmp as a fullmatrix of size A.irow× B.jcol. Perform fullmatrix times H-matrix
product:

Ctmp.M = hmtx_MxH(A.M, B)
Change matrix format to goal format :C = hmtx_changeformat(Ctmp,C)

end
if A is a rkmatrix and B is a supermatrix then

Create Ctmp as an rkmatrix of size A.irow×B.jcol. Perform fullmatrix times H-matrix product:
Ctmp.V = hmtx_MxH(A.V’, B)’
Ctmp.U = A.U
Ctmp.k = A.k
Recompress Ctmp using rSVD_rkmatrix. Change matrix format to goal format : C =
hmtx_changeformat(Ctmp,C)

end
if A and B are fullmatrices then

Create Ctmp as an fullmatrix of size A.irow× B.jcol. Ctmp.M = A.M*B.M
Change matrix format to goal format : C = hmtx_changeformat(Ctmp,C)

end
if A and B are rkmatrices then

Create Ctmp as an rkmatrix of size A.irow× B.jcol. Ctmp.U = A.U
Ctmp.V = B.V*(B.U’*A.V)
Ctmp.k = A.k
Recompress Ctmp using rSVD_rkmatrix. Change matrix format to goal format : C =
hmtx_changeformat(Ctmp,C)

end
if A is a rkmatrix and B is a fullmatrix then

Create Ctmp as an rkmatrix of size A.irow× B.jcol. Ctmp.V = B.M’*A.V
Ctmp.U = A.U
Ctmp.k = A.k
Recompress Ctmp using rSVD_rkmatrix. Change matrix format to goal format : C =
hmtx_changeformat(Ctmp,C)

else
For all other cases, mirror previous cases.

end
return C

3.3.4 Inversion
Using the equation 2.12, the function hmtx_inv inverts an H-matrix. This function is a rough inversion of
an H-matrix and is too computationally expensive to be truly used. This was only coded for our tests and
comparisons with the LU inversion.

34

Algorithm 9: hmtx_inv
Inputs : M
Outputs : M−1

if M is a supermatrix then
Use equation 2.12, and perform operations using hmtx_add and hmtx_mult:
Invert M11.
Create X supermatrix used for temporary storage.
X12 = M−1

11 M12
X21 = M21M

−1
11

M22 = S = M22 −M21X12
M22 = S−1

M12 = −X12M22
M11 = M11 +M12X21
M21 = −M22X21

else
if M is a fullmatrix then

Invert M .
end

end
return M

3.3.5 LU decomposition
As explained in section 2.3.5, matrix-vector- and triangular system solvers need to be implemented before
actually coding a H-LU function. In algorithm 10, both types of systems can be solved, in just one function.
This function can thus also serve as a matrix-vector solver if needed.

Algorithm 10: hmtx_lsolve
Inputs : L,B with L lower triangular
Outputs : X such that LX = B
if L,B are supermatrices then

Perform operations using hmtx_add and hmtx_mult following section 2.3.5:
L11X11 = B11
L11X12 = B12
L22X21 = B21 − L21X11
L22X22 = B22 − L21X12

end
if L,B are fullmatrices then

[X = L\B.
end
if L is a fullmatrix then

if B is an rkmatrix then
X.U = L\B.U
X.V = B.V

end
if B is an supermatrix then

Create a temporary fullmatrix copy of B, solve for X and convert X back to a supermatrix
using hmtx_changeformat.

end
end
if L is a supermatrix and B isn’t then

Split B into four blocks if it has more than 1 column. If it doesn’t, then B is a vector, and convert
L to fullmatrix format. Recursively call solving function.

end
return X

Solving a matrix system XU = B for X, with U upper triangular is done essentially in the same way. The
same function can even be used as, by transposing the equation XU = B it becomes UTXT = BT with UT

lower triangular. A function called hmtx _solve is then used to solve a triangular system either from the right
or left side, using hmtx_lsolve.

35

Algorithm 11: hmtx_lu
Inputs : M
Outputs : L,U
if M is a supermatrix then

Use equation 2.16, and perform operations using hmtx_add and hmtx_mult. Solve triangular
systems for L and U blocks using hmtx_solve:

[L11, U11] = lu(M11)
L11U12 = M12
L21U11 = M21
L22U22 = M22 − L21U12

else
if M is a fullmatrix then

[L,U] = lu(M).
end

end
return L,U

3.4 Preliminary results
The H-matrix technique aims to enable operations of almost linear complexity. The following benchmarks

were done on a Intel Core i7-8750H CPU @2.20 GHz, with 8 GB of RAM. As no other computers were available
at the time, some tests on bigger H-matrices could not be computed, due to a lack of memory on this one. All
tests were computed with a prescribed accuracy of 10−4.

Figure 3.4: Charged points on a sphere

0 200 400

0

100

200

300

400

500
 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

Figure 3.5: Corresponding H-matrix, block colors
correspond to the rank written on the scale, full

blocks are shown in white

3.4.1 Memory and entry compression
Definition 3.4.1 (Sparsity and storage). Let TI×I be a block cluster tree based on TI . The sparsity constant
Csp of TI×I is defined by

Csp = max{max
r∈TI

#{s ∈ TI | r × s ∈ TI×I}, max
s∈TI

#{r ∈ TI | r × s ∈ TI×I}}. (3.1)

If TI×I is of depth p, and k ∈ N, the storage requirements NSt(TI×I , k) for a matrix M ∈ H(TI×I , k) are
bounded by :

NSt(TI×I , k) ≤ 2Csp(p+ 1) max{k, nmin}#I (3.2)
where nmin is the minimum block size.

The following graph 3.6 verifies this inequality experimentally, on the H-matrices created in the HmtxLib
library.

3.4.2 Primary (fast) functions
In this section, matrix-vector multiplication, transposition, scalar multiplication, addition or matrix-vector
system solving are considered as primary operations, as opposed to longer, more expensive ones such as inversion.

36

2000 6000 10000 14000

Matrix size (number of rows)

0

0.2

0.4

0.6

0.8

1

1.2

C
o

m
p

re
ss

io
n

 r
at

e

Memory compression

Entry compression

Figure 3.6: Memory and entry compression of the H-matrix compared to the original matrix

Definition 3.4.2 (Matrix-Vector multiplication complexity). Let T = TI×I be a block cluster tree, k ∈ N.
The complexity NHv(T, k) of the matrix-vector multiplication for a matrix M ∈ H(T, k) are bounded by

NHv(T, k) ≤ NSt(T, k). (3.3)

Definition 3.4.3 (Addition complexity). Let T = TI×I be a block cluster tree and k ≥ 1. The complexity of
the formatted addition of two matrices from H(T, k) is bounded by

N⊕(T, k) ≤ 24kNSt(T, k) + 184k3#L(T). (3.4)

The tests conducted on a limited number of H-matrices show below (figure 3.9) that the HmtxLib imple-
mentation show that complexity for primary functions such as addition or transposition are all of almost linear
complexity.

The relative error remains below the prescribed accuracy of 10−4, which shows these functions are fast but
still sufficiently accurate.

2000 4000 6000 8000 10000 12000

Matrix size (number of rows)

-0.5

0

0.5

1

1.5

2

T
im

e
(s

)

Transposition

Scalar mult.

Addition/Subtraction

L/R matrix-vector product

Matrix-vector solver

2000 4000 6000 8000 10000

Matrix size (number of rows)

0

1

2

3

4

5

6

7

R
el

at
iv

e
er

ro
r

10
-5

Reconstruction/Transposition/Scalar product

Left/Right matrix-vector product

Addition/Subtraction

(a) (b)

Figure 3.7: (a) Computation time of primary functions and (b) Accuracy of primary functions on H-matrices

3.4.3 Secondary (slow) functions : multiplication, inversion, triangular system
solvers and LU decomposition

Some more complex functions naturally require more computational time, and are thus classified as "secondary
functions".

Definition 3.4.4 (Idempotency). Let T = TI×I be a block cluster tree based on TI . The elementwise idem-

37

potency Cid(r × t) and idempotency constant Cid(T) are defined by :

Cid(r × t) = #{r′ × t′ | r′ ∈ S ∗ (t) and ∃s′ ∈ TI : r′ × s′ ∈ T, s′ × t′ ∈ T}
Cid(T) = max

r×t∈L(T)
Cid(r × t)

If the tree T is fixed, Cid can be used instead of Cid(T).

Figure 3.8: Example: The idempotency constant Cid(r × t) of the leaf r × t is 9 [35].

Definition 3.4.5 (Formatted multiplication complexity). Let T = TI×I be a block cluster tree with idempo-
tency constant Cid, sparsity constant Csp and depth p. It is assumed once again that nmin ≤ k. The exact
multiplication is a mapping · : H(T, k)×H(T, k)→ H(T, k̃) with some k̃ bounded by

k̃ ≤ CidCsp(p+ 1)k. (3.5)

The formatted multiplication used here (H(T, k) ×H(T, k) → H(T, k′) for any k′ ≥ 0) is defined as the exact
multiplication followed by the truncation Tk from lemma B.0.5 and can be computed with complexity

N�(T, k) ≤ 47C3
idC

3
spk

3(p+ 1)3 max{#I, #L(T)}. (3.6)

While literature provides no complexity estimates for inversion or LU decomposition, the following statement
can be made : If it is assumed, for fullmatrix blocks, that the complexity of the inversion is bounded by that
of the multiplication, then the complexity of the formatted inversion is bounded by the one of the formatted
multiplication. Moreover, it is always expected of a matrix inversion through LU decomposition to be much
faster than a full-on one.

The results show, as expected, that while the formatted multiplication, and especially the formatted inver-
sion, can be quite computationally expensive, the LU factorization takes a more reasonable time to compute.

2000 4000 6000 8000 10000 12000

Matrix size (number of rows)

-50

0

50

100

150

200

T
im

e
 (

s)

2000 4000 6000 8000 10000

Matrix size (number of rows)

0

0.5

1

1.5

2

2.5

3

R
e
la

ti
v

e
 e

rr
o

r

10
-4

(a) (b)

Figure 3.9: (a) Computation time of secondary functions and (b) Accuracy of secondary functions on
H-matrices

For both multiplication and LU factorization, the accuracy remains satisfying, i.e. the relative error stays
below the prescribed tolerance of 10−4. Plots of these operations are shown in figure 3.10.

38

0 200 400

0

100

200

300

400

500

H*H
T
 matrix

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

0 200 400

0

100

200

300

400

500

H
-1

 matrix

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

(a) (b)

0 200 400

0

100

200

300

400

500

Lh

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

0 200 400

0

100

200

300

400

500

Uh

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

(c) (d)

Figure 3.10: (a) Inversion, (b) Multiplication HHT , (c) L factor, (d) U factor plots, block colors correspond to
the rank written on the scale, full blocks are shown in white

39

Chapter 4

MATLAB toolbox for arithmetic
operations of H-matrices

While the first MATLAB library for H-matrices remains the one for chapter 3, hm-toolbox was published
on GitHub [36] a few weeks before all tests on hmtxLib were ready. This other library is a toolbox initially
implementing the arithmetic of HODLR and HSS matrices, which are specific types of hierarchical and H2

matrices. A branch forH-matrices in general was later added, which was compared with the library implemented
in this project, in order to use the best one.

4.1 Library structure
A full description of the library can be found in [36]. As functions are essentially the same as the ones from

hmtxLib but with a different syntax, it will not be explained in detail here. There are however a few differences
between this library and the previous one, which makes the hm-toolbox software faster at first glance :

• Instead of using functions for arithmetic operations, MATLAB operators are overloaded. This means
for example that writing A ∗ B will automatically compute the multiplication of MATLAB matrices, or
H-matrices, or of a MATLAB matrix with an H-matrix, depending on the types of A and B;

• Unless a defined cluster tree is provided, a default cluster tree is used for every H-matrix. This cluster
tree exclusively has full blocks along the diagonal, and low-rank blocks off the diagonal.

However, this library structure hides a downside for the use of H-matrices from non ideal problems. Indeed,
using specific block types of specific sizes is not always optimal, and especially not in this project, and can use
much more memory than a well optimized cluster tree. While inputting a prescribed structure can be done if
one has a routine to create such a structure, arithmetics were clearly not coded having in mind the use of a
non-default cluster tree. In the multiplication for example, if a full block is multiplied by a low-rank block, then
the result becomes a full blocks. In tests from this project, this resulted in having an H-matrix of full blocks.
That is why this second library was reworked to see if it could be a faster way to solve our problems.

4.2 Work done on the library
Using hm-toolbox as a base, some modifications were made to optimize the library to solve real-world

problems. Modifications include :

• An option for the maximum rank of a matrix was added in hmatrixoption and into the ACA decompo-
sition;

• In the hmatrix class, a possibility to directly create a diagonal H-matrix from a vector or a diagonal
matrix was implemented;

• When multiplying a non-leafnode block with a leafnode one, the result now has the admissibility criterion
and the format of the leafnode block. In the end, the algorithm for the multiplication was a hybrid
between the original one and the one from hmtxLib. Other operations were then modified to fit with this
new multiplication;

• A new function, hmatrix_split was created, to split a leafnode block into four given the sizes of the
sub-blocks to be created;

• The function cluster_mask was written to change the structure of an H-matrix given another H-matrix
which has the goal cluster.

40

Using all the new routines with the hybrid multiplication ensured that results remained optimal in terms of
memory occupation and accuracy, while still computing operations in a reasonable amount of time.

4.3 Benchmarks
4.3.1 Tests from the original library on random matrices
This tests were done on the test files provided in the library, following sizes suggested in the library documen-
tation [36], with initial block truncation at a 10−12 threshold. The aim is to keep a relative error below 10−4.
This is always true for both our functions and the original ones, so only absolute errors (‖H-matrix− MATLAB
array‖) are compared here, to see up to where the accuracy can go.

For the multiplication of two banded matrices, our multiplication actually seems to become a little more
optimal than the original one as matrix size increases. Although our function seems more accurate on smaller
matrices, and much less on larger ones in this graph 4.1, relative error remains very low so this is not really
significant here.

1000 2000 3000 4000

Matrix size (number of rows)

0

1

2

3

4

5

6

T
im

e
(s

)

hm-toolbox time

Our multiplication time

1000 2000 3000 4000

Matrix size (number of rows)

2

2.5

3

3.5

4

A
b

so
lu

te
 e

rr
o

r

10
-15

hm-toolbox error

Our multiplication error

(a) (b)

Figure 4.1: (a) Computation time of the product of two banded H-matrices and (b) Absolute error

When multiplying to unstructured H-matrices (thus using the default cluster tree), the two functions remain
equivalent in time, but the original one has an increased absolute error for larger matrix sizes. This is also found
in the next tests, such as the cube of an H-matrix 4.2 or the LU decomposition 4.4.

1000 2000 3000 4000

Matrix size (number of rows)

0

10

20

30

40

50

60

70

T
im

e
(s

)

hm-toolbox time

Our multiplication time

Figure 4.2: Computation time of the product of two
unstructured H-matrices

N (matrix size) hm-toolbox error our error

512 5.45× 10−12 5.90× 10−12

1024 1.16× 10−11 1.21× 10−11

2048 2.58× 10−11 2.75× 10−11

4096 2.21× 10−4 6.31× 10−11

Table 4.1: Absolute error of the product of two
unstructured H-matrices

When looking at the cube of an H-matrix, while the gap between absolute errors is even more noticeable,
our function is slightly slower, although computation times remain very close. This was to be expected, as
block conversions and new ACA decompositions are needed in our multiplication when multiplying a leafnode

41

block with a non-leafnode one. This is more common when doing several multiplications on entire H-matrices,
as there may be more block conversions or structural changes, which can be computationally expensive, but
remain optimal in terms of memory.

1000 2000 3000 4000

Matrix size (number of rows)

0

5

10

15

20

25

30

35

T
im

e
(s

)

hm-toolbox time

Our multiplication time

Figure 4.3: Computation time of the cube of an
H-matrix

N (matrix size) hm-toolbox error Our error

512 5.61× 10−9 5.23× 10−9

1024 2.27× 10−8 1.78× 10−8

2048 4.03 8.41× 10−8

4096 11.8 4.16× 10−7

Table 4.2: Absolute error of the cube of an H-matrix

LU solvers are, once again, equivalent in terms of computation time, while the new multiplication makes the
solver much more accurate, as shown in table 4.3.

5000 10000 15000

Matrix size (number of rows)

0

2

4

6

8

10

T
im

e
(s

)

hm-toolbox implicit LU

Our multiplication implicit LU

5000 10000 15000

Matrix size (number of rows)

0

0.02

0.04

0.06

0.08

0.1

0.12

T
im

e
(s

)

hm-toolbox explicit LU

Our multiplication explicit LU

(a) (b)

Figure 4.4: (a) Computation time of an implicit LU solver and (b) Computation time of an explicit LU solver

N (matrix size) hm-toolbox error Our error

512 5.24× 10−10 6.40× 10−9

1024 6.21× 10−9 3.69× 10−9

2048 1.24× 10−2 7.37× 10−8

4096 3.55× 103 8.34× 10−7

Table 4.3: Absolute error of an explicit LU solver

42

4.3.2 Tests on simplified models for this project
Using all these new functions, a test was run on a matrix representing the electromagnetic interactions between
points on a magnetic sphere with a coil 4.5, following the BEM-SIBCmodel [1], generated by CreateSibcMatrices.m.
Two matrix sizes, N = 540 and N = 1620, were mainly used for these tests.

Figure 4.5: A meshed magnetic sphere with a coil represented by a blue circle

For the purpose of these tests, two re-orderings of the matrix entries were used, so as to find the optimal
clustering :

• Reordering 1: The first one was based on creating an adjacency matrix of the cluster of points on the
sphere, and applying reverse Cuthill-McKee (see appendixD) ordering to this adjacency matrix to minimize
the band;

• Reordering 2: The second one was obtained by directly getting the cluster tree from our own library,
hmtxLib, based on [35].

Then, we proceeded to turn our data into H-matrices using another three different methods :

• Matrix type 1: One directly using hmatrix(A) to turn A into an H-matrix, thus using default partitioning;

• Matrix type 2: Another using A as a handle to get the values from, following the chosen reordering;

• Matrix type 3: The last one still using a reordered A as a handle, but also giving the cluster tree from
hmtxLib as an arbitrary partitioning. This one could thus only be used with the second reordering.

Here is a table of computation times for both versions of the multiplication, and also for cluster_mask
applied on the new multiplication to have an output of the desired format.

N Reordering Matrix type New multiplication cluster_mask Original multiplication

540 1 2 1.218047 0.197381 1.1911

540 1 1 1.009756 0.230722 1.4165

540 1 3 1.232777 0.2938 1.4414

540 2 2 0.923214 0.3073 1.2908

540 2 1 1.168926 0.119000 1.3187

1620 1 2 4.846048 0.402783 6.424122

1620 1 3 6.7908 1.181719 7.049392

1620 2 2 6.561993 0.851294 6.332305

1620 2 1 6.752903 1.170490 7.192651

Table 4.4: Computation time for different re-orderings and matrix constructions (in seconds)

According to table 4.4, the new multiplication is always slightly faster than the original one. It also prevents
the issue that often happened with using a specific cluster tree with the original multiplication: mismatched

43

block multiplications were transformed into full blocks, but they can now be admissible blocks, as explained
above. With the addition of cluster mask, this guarantees that the structure of the matrix is always kept
throughout the operations.

Regarding matrix storage (table 4.5), directly using our cluster tree and using it to fill the matrix is by
far the most efficient method. The worst cases are always obtained by using the default cluster tree from the
hm-toolbox library, no matter the re-ordering.

Reordering Matrix Type Bytes

1 3 11,441,133

1 2 13,103,253

2 2 19,368,549

1 1 25,408,669

None 1 25,408,669

2 1 25,408,669

Table 4.5: Size (in bytes) for different re-orderings and matrix constructions (N = 1620)

As the previous example was very specific, using a matrix composed of four very different blocks (2 full
blocks, one bottom-left sparse block and one bottom-right diagonal block), some tests were then done on a
simpler example. This new matrix represents the interactions between N charged points on a sphere, as shown
in figure 4.6.

Figure 4.6: Charged points on a sphere for N = 500 (one color corresponds to one matrix block)

Both multiplication seemed pretty equivalent in terms of time, although, for larger matrices, the new one
remained faster (figure 4.7). Moreover, regarding the accuracy, the new multiplication is, at all times, more
accurate than the original one. The gap widens when the matrix gets larger, as shown by table 4.6.

44

2000 4000 6000 8000

Matrix size (number of rows)

0

20

40

60

80

T
im

e
(s

)

hm-toolbox time

Our multiplication time

Figure 4.7: Computation time for different matrix
sizes (in seconds) using our cluster tree

N New multiplication Original multiplication

602 0.5576515 0.4706100

2452 3.262714 3.491502

5552 4.752340 4.901622

8012 2.832364 3.416937

Table 4.6: 106× relative error for different matrix
sizes (with original tolerance of 1× 10−6)

2000 4000 6000 8000

Matrix size (number of rows)

0

2

4

6

8

10

12

14

b
y

te
s

10
7

hm-toolbox

Our multiplication

Figure 4.8: Memory occupation (in bytes) of multiplications of H-matrices for different matrix sizes for the
original multiplication and the new one

Memory occupation was equivalent for small matrices, but the newer code seemed to be more optimized for
larger ones, as shown by figure 4.8. The test was also run on a 22352 × 22352 matrix, which took 0.378 GB,
while running the code with the original multiplication caused the computer to run out of memory.

In conclusion, for larger matrices, which is the kind of matrices that truly need an H-matrix partitioning,
our additions to the library give faster, more accurate and storage-optimized results.

45

Chapter 5

Using H-matrices for solving problems
with hybrid BEM-SIBC formulation

The libraries previously introduced were then used to solve matrix systems in H-matrix form, resulting from
hybrid BEM-SIBC formulation of electromagnetic problems. While the ultimate goal is to use it on large
complex systems like a car body, tests on the available computed were only run on smaller systems, such as
several spheres and a coil of different magnetic-conductive and magnetic-non conductive materials, surrounded
by air, as explained in section 1.4.

Figure 5.1: Example domain of study : obj 1, obj 2 and obj 3 are disconnected regions which can be made of
the same or of different materials

5.1 Adapting H-matrix cluster trees to fit with the geometry of the
system

Using the equations from part 1.3, the resulting matrix equation accounts for electromagnetic equations in
three regions :

1. The free air region, using standard BEM matrices H0 and G0 with one unknown for each face, using
reduced scalar potential ϕ and its normal derivative, satisfying

H0ϕ−G0∂nϕ = 0; (5.1)

2. Each disconnected magnetic regions (onlyA andB in this case) giving rise toB1 =

HAA
0 − I

HBB
0 − I

,

46

B2 =

GAA0

GBB0

 with their sub-blocks directly coming from H0 and G0, and the relative magnetic

permeability matrix Mµ =

µARI
µBRI

. This satisfies the magnetic equation

B1ϕ
M +M−1

muB2∂nϕ
M = M−1

µ B2H
M
Sn −B1hSt; (5.2)

3. The magnetic-conductive regions using SIBC, treated as a single block, and verifying

CY −1CTϕC + jωµ0S∂nϕ
C = CY −1hS + jωµ0SH

C
Sn (5.3)

with hS , HC
Sn known source terms, Y the sparse admittance matrix, C the face-to-edge connectivity matrix,

S the face area diagonal matrix and ω = 2πf, µ0 = 4π × 10−7 H m−1, f being the frequency.
This gives rise to the final matrix equation

H0 −G0

B1 0

0 CY −1CT

−M−1
µ B2 0

0 jωµ0S

 ϕ

∂nϕ

 =

0

−M−1
muB2HSn −B1hSt

CY −1hS + jωµ0SHSn

(5.4)

which can also be translated as, by separating magnetic-only and magnetic-conductive variables and ex-
pressing normal derivatives ∂nϕ in terms of ϕ:

H0ϕ−G0∂nϕ = 0 (5.5)

A

ϕM
ϕ

 = b (5.6)

with
A =

(
HM

0 −GM0 B−1
2 MµB1 HC

0 −GC0 (jωµ0S)−1CY −1CT

)
and

b =
(
GM0 GC0

) HM
Sn +B−1

2 MµB1hSt

HC
Sn + (jωµ0S

−1)−1CY −1hS

 .

As some matrix blocks are dense, other diagonal or even empty, the idea was to create a cluster tree for an
H-matrix which would keep the separation between those blocks. Each block would be an H-matrix in itself.
Inside blocks such as B1 or B2, the natural geometric division would also be preserved, in order to keep a
diagonal bock matrix.

5.1.1 Using non-binary partitions
The first idea was to change the partitioning system, using a non-binary partition to have a first splitting
corresponding to the number of disconnected magnetic regions, plus one block for conductive regions. This
partitioning was implemented in the H-matrix structure, but after taking a look at arithmetic operations, this
first option was put aside. Indeed, adding may cases or parameters for each operation would have created a
code far too long and complicated for a computing tool that was meant to be fast and memory-saving.

5.1.2 Binary splitting following disconnected regions
The other path that was explored was recursively following geometry to create a binary splitting for matrices
such as B1 or G0. This led to having a few more off-diagonal blocks than needed for block diagonal matrices,
but ended up being the most optimized choice. The routine takes as inputs all the classic inputs to create an
H-matrix in the hm-toolbox format, plus a list of indices at which there are geometry splits. It recursively
splits a block in 4 sub-blocks at the geometry splitting point, until the end of the index list. Once everything
has been split according to geometry, each sub-block created is then transformed into an H-matrix block with
the clustering from hmtxLib, as shown on G0 in figure 5.2.

47

Figure 5.2: G0 matrix structure plotted by hm-toolbox. Full blocks are filled with blue, while low-rank ones
have their rank displayed inside.

5.2 Using the new cluster tree and H-matrix algebra to solve the
final equation

This new cluster tree was then used to convert matrices intoH-matrices, in the routine for solving the physics
problem, which had been developed in earlier projects. B1, B2, G0 and H0 were thus saved as H-matrices, with
B1 and G0, and B2 and H0 having the same primary divisions in their cluster tree. The matrices from equation
5.6 were then created (only computing the LU decomposition of the admittance matrix Y is needed for the
solver, not the full inversion, so this was not too expensive) using H-matrix operations, and used in the solver,
to give back a solution also as an H-matrix.

5.3 Results
As shown by figure 5.3, the H-matrix version of the solver actually required more iterations than the original

one. Although it optimized storage, results also lacked accuracy, as seen in figure 5.4.

This can be explained by problems in the creation of the H-matrices themselves. Indeed, even when creat-
ing diagonal H-matrix blocks of B1 with a tolerance of 1× 10−6, the relative error was of 0.0485. The reasons
behind this huge reconstruction error are currently under study, as this problem happened with no previous
tests. There is also currently no proper preconditioning, which needs to be incorporated if the system is to be
solved iteratively.

However, if solving this error does not sufficiently reduce the number of iterations in GMRES, an approximate
inversion of the matrix A by using a hierarchical LU decomposition with low accuracy can still serve as a
preconditioner for an H-matrix or even non H-matrix solution.

48

0 20 40 60 80 100 120
iteration #

-8

-6

-4

-2

0

lo
g
1
0
(|

| A
x
-b

 ||
/||

 b
 ||

)

0 10 20 30 40 50 60
iteration #

-8

-6

-4

-2

0

lo
g
1
0
(|

| A
x
-b

 ||
/||

 b
 ||

)

(a) (b)

Figure 5.3: Number of iterations in GMRES using (a) H-matrices (time = 7.88 seconds) and (b) without
H-matrices (time = 5.24 seconds)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Radial distance (m)

-6000

-4000

-2000

0

2000

4000

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

 (
m

T
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Radial distance (m)

0

1000

2000

3000

4000

5000

6000

M
ag

n
et

ic
 f

lu
x

 d
en

si
ty

 (
m

T
)

Figure 5.4: BEM-SIBC hybrid formulation with H-matrices and FEMM on the x and z components of the
magnetic flux density

49

Conclusion
In this report, different implementations of the H-matrix representation have been implemented. The first

one was meant to fully optimize storage and accuracy, creating blocks of various sizes and shapes, and shuffling
matrix indexes, mostly leaving computational speed aside. The second library was originally very simple, and
functioned by overloading MATLAB operators while keeping a fixed cluster tree, thus focusing more on speed
than on the other aspects. The final library was an hybrid between the two, using the optimized cluster trees
from the first one, while trying to keep fast and simple routines from the second one for algebraic operations.
All methods have been tested in terms of efficiency and accuracy, on simple benchmarks, before applying any
to the original physical problem.

The third version of the H-matrix library was then modified once again to take into account the particular
geometry of specific problems leading to BEM-SIBC formulations. The cluster tree structure was modified
to keep sparse, dense or diagonal blocks separated, so as to keep blocks of zeros together, and to only have
interactions in a single region or between two regions represented in each block. Resulting matrices from the
BEM-SIBC formulation of the physical problem were then stored and used in H-matrix format, and results
were compared to the ones provided by the reference software, FEMM. As currently results are not optimal,
changes in the H-matrix format and proper preconditioning will be explored in the future.

50

Bibliography

[1] Fabio Freschi, Luca Giaccone, and Maurizio Repetto. Algebraic formulation of nonlinear surface impedance
boundary condition coupled with BEM for unstructured meshes. Engineering Analysis with Boundary
Elements, 88:104–114, March 2018.

[2] E.R. Dobbs. Basic Electromagnetism. Physics and Its Applications. Springer, Dordrecht, 1993.

[3] Grégoire Allaire. Approximation numérique et optimisation : Une introdution à la modélisation mathéma-
tique et à la simulation numérique, 2016.

[4] Enzo Tonti. The Mathematical Structure of Classical and Relativistic Physics. Springer New York, 2013.

[5] Piergiorgio Alotto, Fabio Freschi, Maurizio Repetto, and Carlo Rosso. The Cell Method for Electrical
Engineering and Multiphysics Problems. Springer Berlin Heidelberg, 2013.

[6] Felix Klein. Elementary Mathematics from a Higher Standpoint. Springer Berlin Heidelberg, 2016.

[7] Discrete physics. http://www.discretephysics.org/en/.

[8] Zhuoxiang Ren. Habilitation à diriger des recheches : Contribution à la modélisation des systèmes électro-
magnétiques tridimensionnels. 1997.

[9] Rich Schwartz. The hodge star operator, course notes, 2015.

[10] Pierre Mounoud. Notes de cours : Formes différentielles. https://www.math.u-bordeaux.fr/~pmounoud/
tds/chap4.pdf.

[11] S. Yuferev, N. Ida, and L. Kettunen. Invariant BEM-SIBC formulations for time- and frequency-domain
eddy current problems. IEEE Transactions on Magnetics, 36(4):852–855, July 2000.

[12] Martin Costabel. Principles of boundary element methods. Computer Physics Reports, 6(1-6):243–274,
August 1987.

[13] J. Simkin and C.W. Trowbridge. Three-dimensional nonlinear electromagnetic field computations, using
scalar potentials. IEE Proceedings B Electric Power Applications, 127(6):368, 1980.

[14] W.M. Rucker and K.R. Richter. Three-dimensional magnetostatic field calculation using boundary element
method. IEEE Transactions on Magnetics, 24(1):23–26, 1988.

[15] F. Moser M. Schanz L. Gaul, M. Kögl. Boundary element methods for the dynamic analysis of elastic,
viscoelastic, and piezoelectric solids. Graz University of Technology, 2017.

[16] A. Nicolet. Boundary elements and singular integrals in 3d magnetostatics. Engineering Analysis with
Boundary Elements, 13(2):193–200, January 1994.

[17] R.D. Graglia. On the numerical integration of the linear shape functions times the 3-d green's function
or its gradient on a plane triangle. IEEE Transactions on Antennas and Propagation, 41(10):1448–1455,
1993.

[18] D. Wilton, S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler. Potential integrals for uniform
and linear source distributions on polygonal and polyhedral domains. IEEE Transactions on Antennas and
Propagation, 32(3):276–281, March 1984.

[19] J. D. Jackson and Ronald F. Fox. Classical electrodynamics, 3rd ed. American Journal of Physics,
67(9):841–842, September 1999.

[20] Alain Bossavit. Computational electromagnetism and geometry: Building a finite-dimensional "maxwell’s
house. J Japan Soc Appl Elctromagn Mech, 7, 01 1999.

[21] G. Paoli, O. Biro, and G. Buchgraber. Complex representation in nonlinear time harmonic eddy current
problems. IEEE Transactions on Magnetics, 34(5):2625–2628, 1998.

51

http://www.discretephysics.org/en/
https://www.math.u-bordeaux.fr/~pmounoud/tds/chap4.pdf
https://www.math.u-bordeaux.fr/~pmounoud/tds/chap4.pdf

[22] Finite element method magnetics. http://www.femm.info/.

[23] Fabio Freschi, Luca Giaccone, and Maurizio Repetto. Educational value of the algebraic numerical methods
in electromagnetism. COMPEL - The international journal for computation and mathematics in electrical
and electronic engineering, 27(6):1343–1357, November 2008.

[24] M.K. Kim and I. Yun. An efficient implementation of the generalized minimum residual algorithm with
a new preconditioner for the boundary element method. Engineering Analysis with Boundary Elements,
35(11):1214–1224, November 2011.

[25] Jan Mandel. On block diagonal and schur complement preconditioning. Numerische Mathematik, 58(1):79–
93, December 1990.

[26] Jonathan Richard Shewchuk. What is a good linear finite element? - interpolation, conditioning, anisotropy,
and quality measures. Technical report, In Proc. of the 11th International Meshing Roundtable, 2002.

[27] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

[28] Sergej Rjasanow and Olaf Steinbach. The Fast Solution of Boundary Integral Equations. Springer US,
2007.

[29] Ursula van Rienen, Michael Günther, and Dirk Hecht, editors. Scientific Computing in Electrical Engi-
neering. Springer Berlin Heidelberg, 2001.

[30] Mario Bebendorf. Hierarchical Matrices : A Means to Efficiently Solve Elliptic Boundary Value Problems.
Springer Berlin Heidelberg, 2008.

[31] Steffen Börm and Lars Grasedyck. Hybrid cross approximation of integral operators. Numerische Mathe-
matik, 101(2):221–249, June 2005.

[32] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin. A theory of pseudoskeleton approximations.
Linear Algebra and its Applications, 261(1-3):1–21, August 1997.

[33] Mario Bebendorf. Approximation of boundary element matrices. Numerische Mathematik, 86(4):565–589,
October 2000.

[34] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing,
70(1):1–24, February 2003.

[35] L. Grasedyck S. Börm and W. Hackbusch. Hierarchical matrices. Lecture Notes 21, 2003.

[36] Stefano Massei, Leonardo Robol, and Daniel Kressner. hm-toolbox: Matlab software for hodlr and hss
matrices, 2019.

[37] G.M Del Corso, O. Menchi, and F. Romani. Technical report : Krylov subspace methods for solving linear
systems. Università di Pisa.

[38] Jocelyne Ehrel. Course notes : Résolution itérative de systèmes linéaires. 2014.

[39] Vladimir Ivancevic and Tijana Ivancevic. Undergraduate lecture notes in De Rham-Hodge theory. 07 2008.

52

 http://www.femm.info/

Appendix A

Glossary

• BEM: Boundary Element Method

• FEM: Finite Element Method

• SIBC: Surface Impedance Boundary Conditions

• ACA: Adaptive Cross Approximation

• GMRES: Generalized Minimal Residual Method

• SVD: Singular Value Decomposition

• FEMM: Finite Element Method Magnetics

53

Appendix B

Additional proofs

Lemma B.0.1. For k,∈ N, k ≤ n, e(k, n) defined above satisfies e(k, n) ≤
√
k(n− k) + 1.

Proof. Let k,∈ N, k ≤ n If U ∈ Rn×k is a matrix for which 1
max

P submatrix of B
σmin(P) = e(k, n), one may assume

without loss of generality that the submatrix P̂ with a maximum det
(
PHP

)
(later denoted as "volume of the

submatrix") resides in the first k rows of U . Then, the submatrix of maximal volume in Ũ = UP̂−1 =

Ik,k
V

is located in the same k rows. If for any 1 ≤ i ≤ n, 1 ≤ j ≤ k, |ũi,j | > 1, then by swapping the ith and jth
rows, a submatrix whose volume is greater that 1 could be obtained. This contradicts the choice of P̂ . Thus :

σ−1
min(P̂) = σmax(Ũ) ≤

√
‖I‖22 + ‖V ‖22 ≤

√
k(n− k) + 1.

Lemma B.0.2 (Exact reproduction of rank k matrices). Let n,m ∈ N∗. Let A ∈ Cn×m be a matrix of rank
exactly k. Then Rk =

∑k
N=1 a

N (bN)H from algorithm 2 equals A.

Proof. If for k′ ∈ {0, .., k}, A′k = A−
∑k
N=1 a

N (bN)H is of rank k − k′, then for k = k′, Ak is of rank 0 so that
A =

∑k
N=1 a

N (bN)H .
This first assumption will be proven by induction. First, if k′ = 0, the result is trivial. Let us suppose now the
assumption is true for k′ ∈ {0, ..., k − 1}. Let V = Im(Ak′), dim(V) = k − k′ and W = V ⊥ the n − k + k′-
dimensional complement in Cn×m. Let Ṽ and W̃ denote the corresponding spaces for Ak′+1 = Ak′ − ak

′(bk′)H .
By construction, ak′+1 = Ak′(:, jk′+1) is a column of Ak′ thus ak

′+1 ∈ V and V ′ ⊂ V . Similarly, bk′+1 and a
certain column ik′+1 of Ak′ are co-linear, thus W ′ ⊂W . Then there holds, for δ = maxi,j |Ak′+1(i, j)|:

eHik′+1
Ak′ = (bk

′+1)Hδ 6= 0

eHik′+1
(Mk′ − ak

′+1(bk
′+1)H) = (bk

′+1)Hδ − eHik′+1
ak
′+1(bk

′+1)H = 0

so that eik′+1 ∈ W ′ \W , i.e. dim(V ′) ≤ dim(V) − 1. Since M − k′ + 1 is a rank one perturbation of Mk′ ,
rank(Mk′+1) = rank(Mk′)− 1 = k − k′ − 1.

Lemma B.0.3 (Interpolation property). Let A ∈ Ct×s be a matrix of rank at least k ≥ 1 and Rk the cross
approximation from algorithm 2. Then, for any row pivot index i∗ and any column pivot index j∗ there holds :

Rkej∗ = At×{j∗} and eHi∗Rk = A{i∗}×s

i.e., Rk exactly reproduces the pivot columns and rows of A.

Proof. For k = 1, i, j ∈ t× s,
(R1ej∗)i = a1

i b
1
j∗ , (eHi∗R1)j = a1

i∗b
1
j = Ai∗,j

so that for the remainder A1 the row i∗ and column j∗ is zero. One proves by induction over k′ = 1, .., k that
each Rk′ fulfills the statement for the first k′ pivot elements. For k′ = 1, the proof is the same as for k = 1.
Let k′ ∈ {1, .., k − 1} and suppose the statement true for k′. The matrix Ak′ = A −

∑k
N=1 a

N (bN)H has zero

54

columns and rows for the first k′ pivot columns and rows by construction and lemma B.0.2. For the k′ + 1-st
column pivot element, denoted as j∗, there holds :

(Rk′+1ej∗)i = (Rk′)i,j∗ + ak
′+1
i bk

′+1
j∗ (Rk′)i,j∗ + (Ak′)i,j∗ = Ai,j∗

and analogously for i∗. For any of the first k′ pivot elements j∗ we conclude
(Rk′+1ej∗)i = (Rk′)i,j∗ + ak

′+1
i bk

′+1
j∗ (Rk′)i,j∗ + (Ak′)i,j∗ = (Rk′)i,j∗ + 0 = Ai,j∗ .

Lemma B.0.4. The cross approximation of a matrix A ∈ Ct×s of rank at least k ≥ 0 by the matrix Rk from 2
is of the form

Rk :=
k∑

N=1
aN (bN)H = A|t×Pcols(A|Prows×Pcols)−1A|Prows×s

Proof. Let R̂k = A|t×Pcols(A|Prows×Pcols)−1A|Prows×s. By construction, both Rk :=
∑k
N=1 a

N (bN)H and R̂k
are of rank k. Let jl ∈ Pcols be the l-th pivot column. Then for the jl-th unit vectorejl there holds

R̂kejl = A|t×Pcols(A|Prows×Pcols)−1A|Prows×jl = A|t×Pcolsel = A|t×{jl}

According to lemma B.0.3, both Rk and R̂k are identical on the span of unit vectors ej∗ , j∗ ∈ Pcols. Since the
image of them spans the whole image of Rk and R̂k, both matrices are identical.

Lemma B.0.5. The operator Tk maps a matrix A ∈ CI×J to a best approximation Ã ∈ H(TI×J , k) with
respect to the Frobenius norm : ∥∥A− Ã∥∥

F
= min
M ′∈H(TI×J ,k)

‖A−A′‖F

Proof. Let A ∈ CI×J , Ã = Tk(A), and P ⊂ TI×J the set of admissible leaves. It follows that∥∥A− Ã∥∥2
F

=
∑
t×s∈P

(|A|t×s − Ã|t×s)2 +
∑
t×s/∈P

(|A|t×s − Ã|t×s)2

=
∑
t×s∈P

(|A|t×s − Tk(A|t×s))2 +
∑
t×s/∈P

(|A|t×s −A|t×s)2

=
∑
t×s∈P

(|A|t×s − Tk(A|t×s))2

Since, by definition, for any t × s, Tk(A|t×s) is the best approximation of A|t×sin Ct×sk , then Ã is the best
approximation of A with respect to the Frobenius norm.

55

Appendix C

LU methods

An LU decomposition of a square matrix A ∈ CN×N is composed of a lower triangular matrix L and an upper
triangular matrix U such that A = LU . An LU decomposition of the matrix A exists iff A is invertible and all
its leading principal minors are nonzero. However, all square matrices have an LU decomposition with partial
pivoting (PLU, such that PA = LU). Computing the LU decomposition is essentially a particular form of
Gaussian elimination.

Given A = (ai,j)1≤i,j≤N , let A(0) = A. A(1), ..., A(n), ..., A(N−1) are then built iteratively, so that A(n) has
zeros under the diagonal in the first n columns. Let A(n−1) be built. Considering its n-th column and its i-th
row, the n-th column multiplied by li,n = −a

(n−1)
i,n

a
(n−1)
n,n

to the i-th row. For n + 1 ≤ i ≤ N , this can be doe by

multiplying A(n−1) to the left with the lower-triangular matrix

Ln =

1 0
. . .

1

ln+1,n
. . .

...
. . .

0 lN,n 1

.

This creates A(n) = LnA
(n−1). After N − 1 such steps, A(N−1) is upper triangular, and L = L−1

1 ...L−1
N−1 is

lower triangular, with A = L−1
1 L1A

(0) = · · · = L−1
1 . . . L−1

N−1A
(N−1) = LA(N−1).

This type of decomposition can be very useful for inverting matrices, or solving matrix systems such as
AX = B withB ∈ CN×N , using the following steps :

1. Given A, compute its LU decomposition;

2. Now having LUX = B, let Y = UX so that LY = B. Solve this triangular system for Y ;

3. Solve the triangular system UX = Y for X.

56

Appendix D

Reverse Cuthill Mc-Kee algorithm

Viewing the cluster of points as a graph in which vertices represent electromagnetic interactions, and modeled by
a weighted adjacency matrix, the idea behind the Cuthill-McKee algorithm is to reduce the maximum distance
between diagonal of the matrix and the non-zero element of the row that is farthest from the diagonal. The
steps are the following :

1. Pick a first point, label it 0;

2. Until all points are labeled, find the point with the lowest index that still has unlabeled neighbors. Label
its neighbors sequentially starting with smallest still available label.

This method tends to optimize the matrix if the labeling is reversed, which gives rise to the reverse Cuthill-
McKee algorithm.

57

Appendix E

Generalized Minimal Residual Method
(GMRES)

GMRES is an iterative Krylow-subspace method for solving nonsymmetric systems of linear equations. Let
A ∈ CN×N , be a non-singular matrix, b ∈ CN , and x0 an initial guess for solving Ax = b.

Definition E.0.1 (Krylow subspace). The Krylow subspace associated with A and r0 is defined as

Kk(A, r0) = span {r0, Ar0, A
2r0, . . . , A

k−1r0} = {sk−1(A)r0, where sk−1 is a polynomial of degree at most k − 1}

where r0 = b − Ax0. Moreover, K1 ⊆ K2 ⊆ K3..., , and the dimension increases at most by one in each step,
while never exceeding N . In fact, the dimension is bounded by the degree of r0 with respect to A, i.e. the
minimal degree ν of the polynomial sk−1 such that sk−1(A)r0 = 0. Kν is invariant and cannot be further
enlarged, hence dimKk(A, r0) = min(k, ν) [37].

The solution of a linear system has a natural representation as a member of a Krylov subspace, and if the
dimension of this space is small, a well-approximated solution can be found in a few iterations, that is why this
type of subspace is suitable for solving linear systems.

In GMRES, it is assumed that b is normalized. The method approximated the exact solution Ax = b by
the vector xk ∈ Kk that minimizes the euclidean norm of the residual rk = Axk − b. Because the vectors
r0, Ar0, ..., A

k−1r0 might be close to linerarly dependent, the Gram-Schmidt orthogonalization is used to find
w1, ..., wk which form a basis of Kk. This orthogonalization applied to a Krylow subspace is called the Arnoldi
method. These vectors and their coefficients are then stored in an upper Hessenberg matrix (this matrix has
zero entries below the first subdiagonal).

The GMRES algorithm can then be described as follows :

1. Choose x0 and a dimension k of the Krylow subspaces;

2. Arnoldi process :

Compute r0 = b−Ax0, β = ‖r0|2, v − 1 = r0

β
.

For 1 ≤ j ≤ k :
w = Avj ,

For 1 ≤ i ≤ j, hi,j = (w, vi), w = w − hi,jvi,

hj+1,1 = ‖w‖2, vj+1 = w

hj+1,1
.

Define Vk = [v1, , ..., vk] , Hk = (hi,j)i,j the upper Hessenberg matrix.

3. Form the approximate solution: xk = x0 + Vkyk where yk = argminy ‖βe1 −Hmy‖2, e1 =

1

0

·

0

.

4. If ‖rk‖2 = ‖Axk − b‖2 is lesser than required precision, then stop. Otherwise, set x0 to xk and go to step
2.

58

Theorem E.0.1. The GMRES method is characterized by

xk ∈ x0 +Kk(A, r0),
rk ⊥ AKk(A, r0),

which is equivalent to ‖rk‖2 = min
x∈x0+Kk(A,r0)

‖b − Ax‖2. The equation Ax = b has a unique solution, towards

which the method monotonously converges in at most N iterations [38].

59

Appendix F

Hodge star operator and differential
forms

Definition F.0.1 (Differential forms). Let p ∈ Rn and let k ∈ N∗. A k-form at p on Rn is a function
ω : Rnp × · · · ×Rnp︸ ︷︷ ︸

k times

→ R which satisfies the following properties:

1. The map ω is multilinear, i.e.

w(−→a1, . . . , c
−→ai + c′−→ai′ , . . . ,−→ak) = cw(−→a1, . . . ,

−→ai , . . . ,−→ak) + c′w(−→a1, . . . ,
−→ai′ , . . . ,−→ak)

for every a ≤ ik, for all −→a1, . . . ,
−→ai ,−→ai′ , . . . ,−→ak ∈ Rnp and all c, c′ ∈ R.

2. The map ω is anti-symmetric, i.e.:

(−→a1, . . . ,
−→ai , . . . ,−→aj ,−→ak) = −(−→a1, . . . ,

−→aj , . . . ,−→ai ,−→ak)

for all A ≤ i < j ≤ k and all −→a1, . . . ,
−→ak ∈ Rnp .

A 0-form at p is any number r ∈ R. For k ≥ 0, the set of all k-forms at p on Rn is denoted by ΩkpRn.

Definition F.0.2 (Coefficients of a k-form). Ley ω ∈ ΩkpRn, where k ≥ 1. For A ≤ i1, . . . , ikleqn put

wi1,...,ik = w((ei1)p, . . . , (eik)p).

wi1,...,ik are called the coefficients of ω.

Definition F.0.3 (Wedge-product). Let r, s ≥ 1, α ∈ ΩrpRn and β ∈ ΩspRn. The wedge product is defined by
the (r + s) form at p :

α ∧ β : (Rnp)r+s → R (F.1)

where
(α ∧ β)(−→a1, . . . ,

−−→ar+s) =
∑

δ
i1,...,ir+s
1,2,...,r+sα(−→ai1 , . . . ,−→air)β(−−−→air+1 , . . . ,

−−−→air+s) (F.2)

where the summation is taken over all rearrangements i1, . . . , ir+s of 1, 2 . . . , r + s.

Definition F.0.4 (Hodge star operator). The Hodge star operator ? : ΩpRn → Ω(n−p)Rn maps any p-form α
into its dual (n− p)-form ?α on a smooth n-manifold (Rn here). It is defined as:

∧ ? β = β ∧ ?α =< α, β > µ, for α, β ∈ ΩpRn,
? ? α = (−1)p(n−p)α,

?(c1α+ c2β) = c1(?α) + c2(?β), c1, c2 ∈ R,

∧ ? α = 0 =⇒ α ≡ 0.

The operator depends on the metric on Rn and also on the orientation [39].

60

	Introduction
	Hybrid solutions for nonlinear eddy currents problems
	Preliminary notions
	Some equations at the foundation of electromagnetism
	Biot-Savart's law
	Maxwell's equations and Eddy currents

	Green's formula

	Tonti diagrams and numerical methods for electromagnetics
	Classifying physical variables
	Cell complexes
	Dual cell complex
	Orientation of a p-cell
	Cofaces and coboundary
	Incidence numbers and incidence matrices

	Principles of the Classification Theory
	Tonti diagrams
	Resulting numerical scheme
	Hybrid BEM-SIBC numerical scheme

	Description of the electromagnetic system and its resulting equations
	Description of the problem
	Electromagnetic variables
	BEM formulation for the unbounded region
	SIBC formulation in terms of integral variables
	Constitutive equation : linear case
	Constitutive equation : nonlinear case

	Interface conditions
	Final equation
	Nonlinear solution
	Preconditioner

	State of the art

	H-matrix theory
	Hierarchical matrices
	Reminders on Singular Value Decomposition (SVD)
	A quick introduction to ACA method and H-matrices
	Low rank approximation of matrix blocks
	Singular Value Decomposition of low-rank matrices
	Block cluster tree and partitioning
	The set of Hierarchical Matrices

	Cross approximation of admissible H-matrix blocks
	Cross approximation
	Cross Approximation with full pivoting
	Cross approximation with partial pivoting
	Adaptive Cross Approximation (ACA)

	H-matrix algebra
	Rounded addition
	Agglomerating low-rank blocks
	Multiplication
	Inversion
	LU Decomposition
	Using H-matrices for preconditioning

	The H-matrix library in Matlab language : hmtxLib
	H-matrix implementation : creating and filling an H-matrix structure
	H-matrix representation
	Changing the type of an H-matrix block with hmtx_changeformat
	Copying a cluster tree with hmtx_copystruct
	Fullmatrix times H-matrix product using hmtx_MxH
	Plotting an H-matrix
	Coarsening an H-matrix

	Arithmetics
	Simple operations
	Addition and subtraction
	Multiplication
	Inversion
	LU decomposition

	Preliminary results
	Memory and entry compression
	Primary (fast) functions
	Secondary (slow) functions : multiplication, inversion, triangular system solvers and LU decomposition

	MATLAB toolbox for arithmetic operations of H-matrices
	Library structure
	Work done on the library
	Benchmarks
	Tests from the original library on random matrices
	Tests on simplified models for this project

	Using H-matrices for solving problems with hybrid BEM-SIBC formulation
	Adapting H-matrix cluster trees to fit with the geometry of the system
	Using non-binary partitions
	Binary splitting following disconnected regions

	Using the new cluster tree and H-matrix algebra to solve the final equation
	Results
	Conclusion

	Appendix
	Glossary
	Additional proofs
	LU methods
	Reverse Cuthill Mc-Kee algorithm
	Generalized Minimal Residual Method (GMRES)
	Hodge star operator and differential forms

